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Abstract

In recent years, researchers have explored the task of open-
vocabulary video instance segmentation, which aims to
identify, track, and segment any instance within an open set
of categories. The core challenge of Open-Vocabulary VIS
lies in solving the cross-domain alignment problem, includ-
ing spatial-temporal and text-visual domain alignments.
Existing methods have made progress but still face short-
comings in addressing these alignments, especially due to
data heterogeneity. Inspired by metric learning, we propose
an innovative Sliced Wasserstein Bridging Learning Frame-
work. This framework utilizes the Sliced Wasserstein dis-
tance as the core tool for metric learning, effectively bridg-
ing the four domains involved in the task. Our innovations
are threefold: (1) Domain Alignment: By mapping fea-
tures from different domains into a unified metric space, our
method maintains temporal consistency and learns intrin-
sic consistent features between modalities, improving the
fusion of text and visual information. (2) Weighting Mech-
anism: We introduce an importance weighting mechanism
to enhance the discriminative ability of our method when
dealing with imbalanced or significantly different data. (3)
High Efficiency: Our method inherits the computational ef-
ficiency of the Sliced Wasserstein distance, allowing for on-
line processing of large-scale video data while maintain-
ing segmentation accuracy. Through extensive experimental
evaluations, we have validated the robustness of our con-
cept and the effectiveness of our framework.

To overcome this limitation, researchers have begun to ex-
plore the task of open-vocabulary video instance segmenta-
tion [15, 26] (Open-Vocabulary VIS), which aims to iden-
tify, track, and segment any instance within an open set of
categories. These Open-Vocabulary VIS methods can not
only handle traditional predefined categories but also flex-
ibly adapt to new user-specified categories, achieving the
advanced function of on-demand segmentation.

The core of Open-Vocabulary VIS methods lies in solv-
ing the cross-domain alignment problem, including spatial-
temporal domain alignment and text-visual domain align-
ment. Existing methods have different focuses. In terms of
spatial-temporal domain alignment, current methods extract
class-agnostic instance features based on the foundational
model Mask2Former-VIS. Furthermore, OV2Seg [26],
OpenVIS [15], and CLIP-VIS [32] employ memory-based
approaches to perform cross-frame instance matching. In
terms of text-visual domain alignment, existing methods
mainly rely on the zero-shot performance exhibited by
visual-language models, i.e., CLIP [24] pretrained on large-
scale image-text pairs. Specifically, BriVIS [8] and OV-
Former [11] introduce additional CLIP image encoders on
top of visual feature extractors. The difference lies in that
BriVIS integrates them based on contrastive learning, while
OV-Former maps text and visual features into the same
space vis the attention mechanism.

Despite the significant progress made by existing Open-
Vocabulary VIS methods, there are still many shortcomings.

The cross-domain alignment problem remains inadequately
addressed, and the inherent data heterogeneity results in sig-
nificant differences in feature distributions across different
domains. In light of this, we cannot help but trace back
to the development history of traditional machine learn-
ing methods, seeking a tool that can simultaneously solve
spatial-temporal domain alignment and text-visual domain
alignment. We find that the metric learning method in the
field of machine learning provides an effective approach to
addressing the alignment problem [12, 17]. By learning a
suitable metric space, this paradigm makes similar samples
closer while dissimilar samples relatively farther apart, pro-
viding a powerful tool for solving the alignment problem.
Guided by the idea of metric learning, we propose an

1. Introduction

In recent years, video instance segmentation methods [23,
27, 28] have demonstrated significant improvements and
breakthroughs in various application fields. However, most
existing methods rely on the Closed-Set Assumption [4,
22], where the learning and recognition scope of the model
are strictly limited to known categories or labels during
training and testing. This assumption ignores the possibil-
ity of unknown categories in the real world, limiting the
model’s ability to effectively detect unknown categories.
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innovative Sliced Wasserstein Bridging Learning Frame-
work, i.e., SWbridge. This framework utilizes the Sliced
Wasserstein distance [3] as the core tool for metric learning.
This framework cleverly utilizes the Sliced Wasserstein dis-
tance as the core tool for metric learning. Specifically, we
minimize the Sliced Wasserstein distance between samples
based on random paths through sampling, achieving feature
embedding alignment. We bridge four domains based on
a strategy to address the challenges of cross-domain align-
ment (spatial-temporal domain and text-visual domain).
Our innovations are mainly concentrated in three as-
pects: (1) Domain Alignment. The Sliced Wasserstein
distance has the advantage of accurately capturing differ-
ences in data distributions in high-dimensional spaces. Our
method uses the Sliced Wasserstein distance as a bridge to
map features from different domains into a unified metric
space. This not only maintains temporal consistency by
comparing instance embeddings between adjacent frames,
achieving temporal alignment and effectively mitigating
challenges such as progressive occlusion, but also learns
intrinsic consistent features between modalities, narrowing
the semantic gap and improving the fusion of text and visual
information through modality alignment. (2) Weighting
Mechanism: We introduce an importance weighting mech-
anism to further enhance its discriminative ability when
dealing with imbalanced data or data with significant fea-
ture differences. In open-vocabulary video instance seg-
mentation tasks, there may be significant feature differ-
ences between different instances, and some instances may
be more critical or informative. Through the importance
weighting mechanism, our method can dynamically adjust
the contribution of different instances in the metric space,
allowing key instances to have greater weight in distance
calculations. (3) High Efficiency: Our SWhbridge inher-
its the computational efficiency advantage of the Sliced
Wasserstein distance, making it highly efficient when pro-
cessing large-scale video data. Without introducing addi-
tional network parameters, our method can handle video in
an online manner while maintaining segmentation accuracy.
Combining the aforementioned perspectives and innova-
tions, we propose an open-vocabulary video instance seg-
mentation method capable of bridging multiple domains.
This method has achieved remarkable results on multiple
datasets related to open-vocabulary and video tasks.

2. Related Works

2.1. Open-Vocabulary Detection and Segmentation

Open Vocabulary Detection (OVD) [9, 25] and Open Vo-
cabulary Segmentation (OVS) [13, 18] are cutting-edge
tasks in the field of computer vision, enabling models to
be trained on images containing unannotated novel objects,
thereby breaking the closed-set constraint. This break-

through is primarily attributed to the application of weak
supervision signals, namely the utilization of image-text
pairs (such as image-caption pairs and image-level labels)
or large pre-trained Visual-Language Models (VLMs), such
as CLIP [24]. Supported by weak supervision signals,
methods for OVD and OVS can be categorized into four
main types [31]. The first type is region-aware training,
which learns object feature representations by exploring
the intrinsic links between image regions and text descrip-
tions without relying on the VLMs’ image encoder (VLMs-
IE) or direct object annotations. The second type is the
pseudo-labeling method, which enhances model general-
ization by generating pseudo-labels from preliminary pre-
dictions on unannotated images using both image-text pairs
and the VLMs-IE. The other two types are knowledge dis-
tillation and transfer learning. Knowledge distillation trans-
fers knowledge from pre-trained VLMs to new models or
tasks via a distillation mechanism, while transfer learning
applies knowledge learned by pre-trained models on spe-
cific tasks to new tasks or domains. Both rely on the VLMs-
IE and seldom involve direct training on image-text pairs.
Furthermore, zero-shot learning [29] addresses the
closed-set constraint in scene-aware tasks and differs from
open vocabulary methods. It prohibits access to weak su-
pervision signals during training, but can be converted into
Open-Vocabulary tasks upon gaining access, enhancing the
model’s generalization and recognition of novel objects.

2.2. Open-Vocabulary Video Instance Segmentation

Open-vocabulary video instance segmentation, as an emerg-
ing vision task, aims to simultaneously classify, track, and
segment arbitrary objects within open categories in videos,
attracting considerable attention from researchers in recent
years. OV2Seg [26] has taken the lead in this field by not
only constructing the Large Vocabulary Video Instance Seg-
mentation (LV-VIS) dataset but also proposing the first end-
to-end benchmark for open-vocabulary video instance seg-
mentation. OV2Seg method leverages the Mask2Former [6]
framework to extract class-agnostic masks and query em-
beddings, utilizes the CLIP text encoder for precise mask
classification, and achieves cross-frame instance tracking
through a long-term matching strategy. Subsequent re-
search has mostly followed this basic approach and ex-
panded upon it. OpenVIS [15] introduces a two-stage
framework, OVIS, which adopts a neighboring matching
strategy for instance tracking, effectively simplifying the
processing pipeline. BriVIS [8] models instances as Brow-
nian bridges and closely aligns bridge-level instance rep-
resentations with category texts through contrastive learn-
ing, also employing a neighboring matching strategy to en-
hance the accuracy of instance recognition. OVFormer [11]
introduces a novel unified embedding alignment module
that effectively addresses the domain gap between instance
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queries and text embeddings, demonstrating good practical-
ity with its semi-online processing approach. However, the
aforementioned methods primarily focus on bridging the
domain discrepancy between text and vision, with insuffi-
cient attention to spatiotemporal consistency among cross-
frame instances. CLIP-VIS [32] improves upon this by in-
troducing a time-topK enhanced matching strategy, which
strengthens temporal modeling capabilities between frames
and improves matching accuracy.

We believe that the core of the open-vocabulary video
instance segmentation task lies in simultaneously address-
ing the alignment of the spatial-temporal domain and the
text-visual domain. To this end, based on the concept of
metric learning, we employ the Sliced Wasserstein distance
to bridge various domains. This approach not only ef-
fectively narrows the domain gap between modalities but
also ensures spatio-temporal consistency of instances across
frames, providing a novel solution for the open-vocabulary
video instance segmentation task.

2.3. Vision-Language Models

The core of Visual Language Models (VLMs) [5] is their
deep training on large-scale image-text paired data, en-
abling the fusion and understanding of visual and textual
information, and endowing them with powerful zero-shot
object recognition capabilities [19]. CLIP [24], a prominent
VLM, uses an image encoder to extract visual features and a
text encoder to generate text embeddings, jointly construct-
ing a cross-modal representation space. However, applying
VLMs to open-vocabulary video instance segmentation is
challenging. VLMs, primarily trained on images, struggle
with understanding dynamic video scenes rich in spatiotem-
poral information, and lack the capability to maintain object
consistency across frames. Additionally, the domain shift
between text and vision poses a significant challenge, po-
tentially leading to biases in mapping textual information
to the visual space. To overcome these limitations, we pro-
pose a progressive approach that addresses the spatiotempo-
ral consistency issue and the domain shift problem, enabling
VLMs to better adapt to video instance segmentation tasks.

3. Preliminaries

3.1. Open-Vocabulary VIS Formulation

Given a test video Dy.s; with T frames, the objective in
Open-Vocabulary VIS is to accurately predict all N in-
stances belonging to the categories in C = Cpgse U Chovel
by the trained model fy. Cpqse 1S the set of base (training)
categories, and C,,4.¢; 18 the set of novel categories that are
not seen during training but may appear in the test videos.
The prediction can be formulated as:

{{mlam27~-~7mT}ac}’nN:fG(Dtest); (1)

where {m; }]_, is the segmentation masks, and ¢ € C.

3.2. Sliced Wasserstein Distance

One-dimensional Wasserstein Distance. For one-
dimensional probability measures p and v in P,(R), the
p-Wasserstein distance is defined as:

1
WE (1, v) = / Fol(z) - B )P de, @)

where F), and F, are the cumulative distribution functions
(CDFs) of i and v. This formulation provides a closed form
for computing the Wasserstein distance in one-dimensional
spaces, making it well-suited for projected measures.
Sliced Wasserstein Distance. To generalize the Wasser-
stein distance to higher-dimensional measures, the Sliced
Wasserstein Distance (SWD) projects the measures p and v
in P,(R?) onto one-dimensional subspaces, and then aver-
ages the one-dimensional Wasserstein distances from these
projections. For p, v € Pp(Rd), the SWD is defined as:

SWE (i, v) = EBgogysa-1y [WE (05, 050)],  (3)

where 011 and 04v represent the push-forward measures of
u and v along direction # € S, the unit sphere in R¢.
This projection f(x) = 6"z maps points from R? to R,
enabling the computation of Wasserstein distances in a one-
dimensional space.

Since the expectation in Eq. 3 is computationally expen-
sive, SWD is typically approximated by averaging over L
independent directions, 1, . . ., 0, sampled from 2/(S¢~1):

L

<P 1

SWp(#aV,L) = Z E Wg(olﬂ%olﬁl/)a (4)
=1

where each 0,8y and ;v are projected representations of
and v along the direction ;. The number of projections L
controls the accuracy of the Monte Carlo approximation.

4. Method

As illustrated in Fig. 1, we propose the SWbridge frame-
work. Firstly, in §4.1, we integrate a category-agnostic fea-
ture extractor. Then, in §4.2, we introduce a spatio-temporal
bridging module that robustly establishes instance associa-
tions between adjacent frames, ensuring the consistency and
coherence of temporal information. Finally, in §4.3, we de-
sign a modal bridging module that performs fine-grained
semantic mapping across the text and visual domains to en-
hance cross-domain understanding and effectively address
the challenges posed by domain shifts.

4.1. Class-agnostic Feature Extractor

Given a video D consisting of T frames, {V; €
R3H>WAT | where H and W denote the height and
width of each frame, our model follows the conven-
tional paradigm [11, 26, 32] by adopting the Mask2Former
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Figure 1. Overview of the proposed SWBridge framework (left) and the Sliced Wasserstein distance calculation process (right).

architecture as a class-agnostic feature extractor. The
Mask2Former comprises three core components: an image
encoder fcpp, a pixel decoder fgecode, and a Transformer de-
coder friansformer- Specifically, the frozen CLIP model fcpp
processes each frame V; independently to extract high-level
visual features F;. These features are then input to the pixel
decoder fgecode, Which upsamples them to produce a multi-
scale feature map D; preserving spatial details. Further-
more, a set of learnable queries () is initialized and fed into
the Transformer decoder frinstormer along with the high-
resolution feature map D;. The Transformer decoder pro-
cesses these inputs to generate the query embeddings F;.

4.2. Spatio-Temporal Bridge

After extracting category-agnostic features, the next chal-
lenge is to construct a spatio-temporal bridge to estab-
lish the correspondence between instances in consecutive
frames ¢ and ¢ + 1. Given the dynamic nature of video
content, objects may encounter occlusion, movement, and
appearance changes. Therefore, it is particularly important
to ensure the accuracy of instance tracking over time. To
achieve this, we employ the Sliced Wasserstein metric.
Initially, for the query embeddings of frames ¢ and ¢ +
1, we perform random sampling to construct random paths
Zij = Qi — Qut1,5, where q; € Eyand qur15 € Eyqq
are outputs of the Transformer decoder frransformer- These
paths are then normalized to obtain the unit direction 0; ; =

ﬁ, which serves as the projection direction.
K2V}

Subsequently, we sample a new projection direction él j

from o, (6; ;; HZZiJHQ) This introduces randomness, po-
5]

tentially yielding different projection directions each time,

which aids in exploring multiple relative positional relation-

ships between feature points. This, in turn, may enhance the
model’s robustness and generalization capability.

With the projection direction éz 4 in hand, we proceed to
calculate the one-dimensional Wasserstein distance. This
involves projecting M, and 7 along the 6 direction to
obtain one-dimensional distributions 6fx and 6fr. These
distributions are then sorted, and the inverse functions of
their cumulative distribution functions (CDFs) are com-
puted. Finally, the one-dimensional Wasserstein distance
WP (04, 04v) is calculated using the formula:

1
WE(F,G) = / Pl -G P, (5)
0

where F' and G are the CDFs of 0fu and 01v, respectively,
and p is typically set to 2.

The next step involves importance weighting and Monte
Carlo estimation. We repeat the aforementioned process
L times to obtain L projection directions {61, ...,60;} and
the corresponding set of one-dimensional Wasserstein dis-
tances. Each distance is then weighted with w, where w
is determined by an increasing function f(-). Increasing
function is f(x) = e*, places higher importance on larger
differences, which may highlight instances with more sub-
stantial temporal changes. The weighted average of these
distances serves as the approximation of SW, calculated us-
ing the formula:

L
WP(0,8M, 08T
SW:lZw. Lf( p(;ﬁ 0 014T)) ’
L 1=1 Zj:l f(WP (ojﬁMta ojﬁT))
where the weight w for each projection direction is:
FWE(0itp, 01v))

= . (7)
O S FWE st 050))

(6)
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Eq.6 yields a weighted Sliced Wasserstein distance that
reflects the relationship between adjacent frames along ran-
dom projection directions, considering both the geometric
positions of data points and their differences through im-
portance weighting.

To establish instance correspondences, we compute the
SW values between all pairs of instances across consecutive
frames ¢ and £+ 1, denoted as SW! (Ey, Ey ). These values
quantify the difference between instances along the projec-
tion direction, with smaller SW values indicating stronger
spatio-temporal consistency. By selecting the instance pairs
with the smallest SW values, we identify those with the
highest temporal alignment, ensuring robust and meaning-
ful associations for instance tracking. Formally, the instance
matching objective is:

Lrime = argmin SW(E;, Eyq1), (8

where the selected pairs correspond to instances with the
strongest spatio-temporal consistency, facilitating accurate
tracking and correlation across frames. Our method thus
emphasizes directions and features that capture significant
inter-frame changes, effectively prioritizing instances that
reflect spatial and appearance consistency. The adaptive
weighting in Eq.6 further enhances tracking by highlight-
ing subtle variations, ensuring robust temporal consistency.

4.3. Text-Visual Bridge

After bridging the temporal consistency between the spatial
and temporal domains through the spatio-temporal bridge,
we are still confronted with the challenge of addressing the
modal domain shift between the text and visual domains.
Video content, with its dynamic and diverse nature, intro-
duces additional complexity as textual descriptions and vi-
sual appearances can vary significantly. To ensure the ac-
curate alignment between text and visual features, which is
crucial in this context, we continue to leverage the Sliced
Wasserstein metric. This metric has proven effective in
our previous spatio-temporal bridging efforts, leading us to
adopt it for modal alignment in our current method.

Specifically, we first combine the temporal feature D,
with the query embeddings E); through multiplication to ob-
tain the visual embeddings M;. Subsequently, we apply
a mask pooling operation to derive a class-agnostic mask
M; € RN*D paged on M; and the frame features F.
Lastly, we obtain the class text embeddings H € RL*P
generated by the CLIP text encoder, where L represents the
number of categories.

It is worth noting that our cross-modal alignment method
bears similarity to the Sliced Wasserstein metric procedure
detailed in §4.2. We begin by defining the projection path
of the cross-modal module as Zﬁj = my; — hy ;. To ob-
tain the projection direction, we normalize this path, result-
ing in 6; ;. Given the relatively small sizes of M, and H,

this module departs from the random sampling approach
and instead adopts a full-path full-projection strategy. Upon
successfully obtaining the projection direction 6, we pro-
ceed to calculate the one-dimensional Wasserstein distance.
We then apply importance weighting and incorporate the
Monte Carlo estimation method in our subsequent calcula-
tions. Following the logic of Eq. 6 and Eq. 7, we ultimately
compute the weighted average as an approximation of the
Sliced Wasserstein distance.

Additionally, similar to Eq. 8, we introduce an additional
loss function L 7,44, to constrain the modality alignment
process. This loss function is defined as:

EModal = arg min SW(Mt, H) (9)
4.4. Loss Function

To mine similarity relations in cross-text video pairs, we
draw on the successful experience of cross-modal learning,
as demonstrated in [8]. To this end, we introduce a cross-
text similarity alignment loss based on contrastive learning.
The loss function is formulated as follows:

1 S log exp(di; /) ’
NL 4~ Yorexp(din/T) + >, exp(dj/T)
(10)
where d;; = sim(m;, h;), sim(-, -) represents the similarity
metric function, and 7 is the temperature hyperparameter.
The Total Loss Lty is a weighted combination of mul-
tiple loss components, which can be written as:

»CVT =

Lot = a7 LTime + anrLvodal + av Lyt + g Lseg, (11)

where Lge, represents the binary cross-entropy and dice
losses for mask prediction, following the approach in [26].
The coefficients ar, apr, vy, and g are the corresponding
weighting factors for each loss component.

Computational complexity. In our Sliced Wasserstein
metric process, the core steps involve matrix operations and
sorting procedures. Initially, we generate a set of initial pro-
jection vectors by randomly selecting samples and comput-
ing the differences among these samples. The complexity of
this selection operation is O(L), while the complexity of the
difference calculation is O(L - D), where L represents the
number of projection vectors and D is the dimensionality of
the samples. Subsequently, we proceed to the normalization
and resampling phase, which also maintains a complexity of
O(L - D). When calculating the one-dimensional Wasser-
stein distance, we need to perform matrix multiplication, a
step with a complexity of O(N - D- L), where N is the num-
ber of samples. Additionally, we need to sort the projected
data, with a sorting operation complexity of O(N log N).
In summary, the overall complexity of our method can be
approximated as O(N - D - L + N log N). In practical ap-
plications, as the number of samples N and the number of
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Table 1. Statistics of the dataset. Cat. and Ins. represent the
number of categories and instances respectively.

Dataset Videos Cat. Ins. Train Val. Test

LV-VIS 4,828 1,196 - 3,083 837 908
YT-VIS19 2,883 40 4,883 2,238 302 343
YT-VIS21 3,859 40 8,171 2,985 421 453
OVIS 901 25 5223 607 140 154
BURST 2914 482 16,000 500 993 1,421

projection vectors L increase, the computational cost of ma-
trix multiplication will become dominant. Although sorting
and other operations with linear complexity also exist, their
contribution to the overall complexity is relatively small.

5. Experiments

5.1. Datasets and Evaluation Metrics

We initially train our method on a combined set of common
and frequent categories derived from the LVIS dataset [16].
Subsequently, we assess the performance of our method on
both the validation and test sets of the LV-VIS dataset [26],
as well as the validation set of several datasets, namely
OVIS [21], YT-VIS 2019/2021 [27], and BURST [1]. The
statistics of the evaluation dataset are detailed in Table 1.
LVIS [16] dataset comprises 1,203 object categories, which
significantly exceeds the number of categories in COCO.
Following ViLD[14], we select 866 frequent and common
categories as the training categories and reserve the remain-
ing 337 rare categories as novel categories.

Evaluation Metrics. Following [26], we present the mean
Average Precision (A P) for all categories in aggregate. Ad-
ditionally, we report on AP, for the novel category.

5.2. Implementation Details

In our implementation, the CLIP image encoder and text
encoder are kept frozen, whereas the pixel decoder, trans-
former decoder, and mask prediction head undergo training.
This strategy effectively harnesses the pre-trained capabili-
ties of CLIP for mask classification and query matching, uti-
lizing query embeddings, thereby obviating the need for cat-
egory and identity annotations. The CLIP model employed
in our framework adopts the ViTB/32 architecture for both
the text and image encoders. Throughout the training pro-
cess, the parameters of these encoders remain frozen. For
optimization purposes, we utilize the AdamW optimizer,
with the base learning rate set to 1 x 1074, 7 = 0.05.
ar, apr, oy, and ag are all set to 1 based on grid param-
eter tuning experience. Following a step-wise learning rate
schedule, this rate is subsequently reduced by a factor of 10
at 90% and 95% of the total training steps. To assess the
robustness and generality of our proposed method, we con-

duct experiments using two distinct backbones: ResNet-50
and SwinB. Our experimental setup is analogous to that of
OV2Seg [26]. All experiments are conducted on a high-
performance machine equipped with eight NVIDIA A800
GPUs, each possessing 80GB of memory. To facilitate a
fair comparison, we also present the inference speed of our
method when executed on a single NVIDIA A100 GPU.

5.3. Main Results

The experimental results presented in Table 2 provide
a comprehensive comparison of our proposed SWBridge
method with several state-of-the-art approaches across mul-
tiple video instance segmentation datasets. A significant
finding reveals that SWBridge exhibited superior perfor-
mance compared to existing methods across 19 out of 22
evaluation metrics in various settings. Furthermore, it at-
tained suboptimal results in the remaining three metrics,
thereby underscoring its efficacy in addressing the inher-
ent complexity associated with Open-Vocabulary VIS. This
result not only verifies the effectiveness of SWBridge in its
design, but also shows that it can adapt well to the character-
istics of different datasets, such as changes in video length,
number of instances, scene complexity, etc.

LV-VIS. When trained on the diverse and extensive LVIS
dataset, which includes a large number of frequent and com-
mon categories, SWBridge exhibits robust generalization
capabilities. This is particularly evident in its performance
on the LV-VIS dataset, where it achieves the highest AP for
both the validation and test sets, including the novel cate-
gories (AP,,). The superior performance on LV-VIS under-
scores SWBridge’s ability to effectively recognize and seg-
ment objects from both base and novel categories, even in
the presence of a significant number of unseen classes dur-
ing training. Although powerful backbone networks such
as ConvNeXt-B can enhance performance, we finds that
the Swin-B backbone network, when combined with the
SWBridge, yields even better results. This indicates that
SWBridge has a synergistic effect with the backbone net-
work, enabling more efficient capture of spatio-temporal
features in videos, and the performance improvement ex-
ceeds that achieved by mere network upgrades.

YT-VIS. SWBridge demonstrates superior performance on
the YT-VIS2019 and YT-VIS2021 datasets, further attest-
ing to its strong capability in handling video instance seg-
mentation tasks with a moderate number of categories. Re-
markably, this method achieves competitive performance
levels without the need for fine-tuning on specific video
datasets. This characteristic indicates that SWBridge can
effectively leverage image-based training data and success-
fully generalize to video data, thereby significantly reduc-
ing the reliance on extensive video-specific annotations.
In comparison with state-of-the-art methods, although OV-
Former achieves excellent results by incorporating an ad-
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Table 2. Comparison with state-of-the-art methods. All the methods are trained on image dataset LVIS and evaluated on the video
instance segmentation datasets directly, i.e., they are not fine-tuned using the training set of each dataset.

Method Backbone LV-VIS val. LV-VIS test YT-VIS2019 YT-VIS2021 OVIS BURST
AP AP, AP AP, AP AP, AP AP, AP AP AP,
DetPro[10]-SORT([2] R50 64 35 58 21 - - - - - - -
Detic[30]-SORT[2] R50 6.5 34 57 21 146 35 127 3.1 6.7 19 25
DetPro[10]-OWTB[20] R50 79 42 70 29 - - - - - - -
Detic[30]-OWTB[20] R50 77 42 70 28 179 45 167 58 9.0 27 1.8
Detic[30]-XMem([7] R50 88 54 77 3.6 - - - - - - -
OV2Seg[26] R50 142 119 114 89 272 11.1 236 73 11.2 37 24
OVFormer[11] R50+ViT-B - - - - 348 165 298 157 15.1 - -
CLIP-VIS [32] R50 195 242 146 159 322 238 30.1 179 141 52 7.7
SWBridge (Our) R50 20.7 249 154 162 334 240 309 184 152 55 8.2
Detic[30]-SORT[2] SwinB 128 66 94 47 238 79 216 98 11.7 25 1.0
Detic[30]-OWTB[20] SwinB 145 85 11.8 6.1 300 9.7 27.1 114 136 39 24
Detic[30]-XMem[7] SwinB 16.3 106 13.1 7.7 - - - - - - -
OV2Seg[26] SwinB 21.1 163 164 115 376 213 339 182 175 49 3.0
OVFormer[11] SwinB+ViT-B | - - - - 443 215 376 183 213 - -
CLIP-VIS [32] ConvNeXt-B | 32.2 40.2 253 30.6 42.1 275 379 220 185 83 127
SWBridge (Our) SwinB 33.0 405 26.0 31.0 430 28.0 385 225 19.7 83 12.8

ditional CLIP image encoder, SWBridge still outperforms
CLIP-VIS in terms of the AP metric under similar model
architectures. More notably, in the A P,, metric, which per-
tains to the segmentation of new class instances, our bridge
strategy comprehensively surpasses the performance gains
brought about by the CLIP encoder.

OVIS. Since the categories of the OVIS dataset highly over-
lap with the LVIS dataset used for training, we only reports
the AP (average precision) performance metric. SWBridge
even outperformed OVFormer with the extra CLIP on the
R50 backbone and was second only to OVFoemer on the
SwinB backbone. SWBridge’s ability to maintain high ac-
curacy under these conditions demonstrates its robustness
in complex visual environments, where the visibility of ob-
jects changes significantly over time.

BURST. The BURST dataset, with its diverse and uncom-
mon categories, poses a unique challenge due to the wide
range of object types. SWBridge’s competitive perfor-
mance on this dataset, especially in terms of AP,,, suggests
that it can effectively manage the intricacies of uncommon
object categories, enhancing its applicability to real-world
scenarios where encountering unseen objects is common.

5.4. Ablation Study

Our ablation experiments continue to use the LVIS dataset
for training with ResNet50 as the Backbone and are eval-
uated on the validation sets of the LV-VIS, OVIS, and
BURST datasets, aiming to measure the performance of the

Table 3. Comparison of ablation results of bridge strategy.

Variant LV-VIS OVIS BURST
AP AP, AP AP AP,
Baseline 85 102 53 26 23
+ Spatio-Temporal Bridge | 15.0 18.0 102 3.1 54
+ Text-Visual Bridge 199 233 142 53 79
+ Ly in Eq. 10 20.7 249 152 55 8.2

proposed SWBridge more comprehensively and rigorously.

Effectiveness of Bridge Strategy. We first established a
baseline variant that removed the Spatio-Temporal Bridge
bridge and Text-Visual Bridge modules, while discarding
the additional contrast loss Ly and retaining only the ba-
sic Lgeq loss function. In order to achieve instance associa-
tion, we adopted the memory module proposed in OV2Seg
to replace the original spatiotemporal bridge function.

The experimental results presented in Table 3 con-
firm the significant effectiveness of each component in
the SWBridge method. Specifically, upon integrating the
spatio-temporal bridge module into the baseline variant, we
observed notable improvements in both AP and AP,, met-
rics across all datasets. This outcome indicates that the
spatio-temporal bridge module efficiently captures spatio-
temporal correlations between video frames, thereby aiding
the model in more accurately understanding and tracking
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Table 4. Impact of ablation results of Importance Weighting.

Variant LV-VIS OVIS BURST
AP AP, AP AP AP,
w/o Weight 153 17.0 123 45 53
w/o Weightin §4.1 | 185 223 13.7 49 6.8
w/o Weightin §4.3 | 19.6 235 145 52 7.5
SWBridge(Our) |20.7 249 152 55 8.2

Table 5. Impact of ablation results of Importance Weighting.

Variant LV-VIS OVIS BURST
AP AP, AP AP AP,
Huberized 18.8 224 138 47 64
Cosine 18.6 222 139 48 6.5
Wasserstein 19.5 233 144 51 170
Sliced Wasserstein | 20.7 249 152 5.5 8.2

the dynamic changes of instances within videos. Further-
more, the model’s performance was significantly enhanced
once again after adding the text-visual bridge module on
top of the spatio-temporal bridge module. By introduc-
ing textual information, the text-visual bridge provides the
model with rich semantic cues, greatly enhancing its accu-
racy in recognizing and understanding instances. Addition-
ally, Ly synergizes with other bridge strategy modules,
collectively driving a comprehensive improvement in the
model’s performance and generalization.

Impact of SW Weighting Mechanism. Table 4 shows that
without a weighting mechanism in the spatio-temporal or
text-visual bridges, the model struggles to utilize key infor-
mation from instances with marked feature differences, lim-
iting performance. However, incorporating the weighting
mechanism into both bridges notably improves model per-
formance. This indicates the mechanism helps the model
focus on crucial instances with significant feature differ-
ences, assigning them greater weights during distance cal-
culation. This adjustment enhances the model’s accuracy
and efficiency in processing complex data.

Comparison of Distance Measurement. In Tab. 5, we
compare distance metrics for SWBridge. Huberized dis-
tance is sensitive to large differences, Cosine similarity ig-
nores feature magnitudes, and Wasserstein distance misses
local details. Our SW distance comprehensively consid-
ers high-dimensional feature differences with importance
weighting, making it robust for complex domain shifts.
Sensitivity analysis of L. In the bridge strategy, we ablated
the number of sampling iterations to explore its relation-
ship with model performance (Fig.2). Results show a non-
linear relationship: increasing iterations significantly im-
proves AP and AP, across all datasets. However, excessive
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Figure 2. Ablation experiment on the number of random projec-
tion sampling L.

iterations introduce noise and computational burden, poten-
tially causing overfitting or reducing training efficiency.

6. Conclusion

In this paper, we propose an innovative Sliced Wasser-
stein Bridging Learning Framework (SWhbridge), aimed at
tackling the challenging task of Open-Vocabulary Video
Instance Segmentation. Inspired by metric learning, our
framework utilizes the Sliced Wasserstein distance as a
core tool to effectively bridge the spatial-temporal and text-
visual domains involved in the task. Through domain align-
ment, we successfully map features from different domains
into a unified metric space, preserving temporal consistency
and learning intrinsic consistent features across modalities.
This significantly improves the fusion of text and visual in-
formation, addressing one of the core challenges in Open-
Vocabulary VIS. Looking ahead, we plan to explore better
optimization methods for the Sliced Wasserstein distance to
further enhance the performance of our framework.
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