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Abstract

In recent years, researchers have explored the task of open-001
vocabulary video instance segmentation, which aims to002
identify, track, and segment any instance within an open set003
of categories. The core challenge of Open-Vocabulary VIS004
lies in solving the cross-domain alignment problem, includ-005
ing spatial-temporal and text-visual domain alignments.006
Existing methods have made progress but still face short-007
comings in addressing these alignments, especially due to008
data heterogeneity. Inspired by metric learning, we propose009
an innovative Sliced Wasserstein Bridging Learning Frame-010
work. This framework utilizes the Sliced Wasserstein dis-011
tance as the core tool for metric learning, effectively bridg-012
ing the four domains involved in the task. Our innovations013
are threefold: (1) Domain Alignment: By mapping fea-014
tures from different domains into a unified metric space, our015
method maintains temporal consistency and learns intrin-016
sic consistent features between modalities, improving the017
fusion of text and visual information. (2) Weighting Mech-018
anism: We introduce an importance weighting mechanism019
to enhance the discriminative ability of our method when020
dealing with imbalanced or significantly different data. (3)021
High Efficiency: Our method inherits the computational ef-022
ficiency of the Sliced Wasserstein distance, allowing for on-023
line processing of large-scale video data while maintain-024
ing segmentation accuracy. Through extensive experimental025
evaluations, we have validated the robustness of our con-026
cept and the effectiveness of our framework.027

1. Introduction028

In recent years, video instance segmentation methods [25–029
27] have demonstrated significant improvements and break-030
throughs in various application fields. However, most ex-031
isting methods rely on the Closed-Set Assumption [4],032
where the learning and recognition scope of the model033
are strictly limited to known categories or labels during034
training and testing. This assumption ignores the possibil-035
ity of unknown categories in the real world, limiting the036
model’s ability to effectively detect unknown categories.037
To overcome this limitation, researchers have begun to ex-038
plore the task of open-vocabulary video instance segmenta-039

tion [15, 24] (Open-Vocabulary VIS), which aims to iden- 040
tify, track, and segment any instance within an open set of 041
categories. These Open-Vocabulary VIS methods can not 042
only handle traditional predefined categories but also flex- 043
ibly adapt to new user-specified categories, achieving the 044
advanced function of on-demand segmentation. 045

The core of Open-Vocabulary VIS methods lies in solv- 046
ing the cross-domain alignment problem, including spatial- 047
temporal domain alignment and text-visual domain align- 048
ment. Existing methods have different focuses. In terms of 049
spatial-temporal domain alignment, current methods extract 050
class-agnostic instance features based on the foundational 051
model Mask2Former-VIS. Furthermore, OV2Seg [24], 052
OpenVIS [15], and CLIP-VIS [31] employ memory-based 053
approaches to perform cross-frame instance matching. In 054
terms of text-visual domain alignment, existing methods 055
mainly rely on the zero-shot performance exhibited by 056
visual-language models, i.e., CLIP [22] pretrained on large- 057
scale image-text pairs. Specifically, BriVIS [8] and OV- 058
Former [11] introduce additional CLIP image encoders on 059
top of visual feature extractors. The difference lies in that 060
BriVIS integrates them based on contrastive learning, while 061
OV-Former maps text and visual features into the same 062
space vis the attention mechanism. 063

Despite the significant progress made by existing Open- 064
Vocabulary VIS methods, there are still many shortcomings. 065
The cross-domain alignment problem remains inadequately 066
addressed, and the inherent data heterogeneity results in sig- 067
nificant differences in feature distributions across different 068
domains. In light of this, we cannot help but trace back 069
to the development history of traditional machine learn- 070
ing methods, seeking a tool that can simultaneously solve 071
spatial-temporal domain alignment and text-visual domain 072
alignment. We find that the metric learning method in the 073
field of machine learning provides an effective approach to 074
addressing the alignment problem [12, 17]. By learning a 075
suitable metric space, this paradigm makes similar samples 076
closer while dissimilar samples relatively farther apart, pro- 077
viding a powerful tool for solving the alignment problem. 078

Guided by the idea of metric learning, we propose an 079
innovative Sliced Wasserstein Bridging Learning Frame- 080
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work, i.e., SWbridge. This framework utilizes the Sliced081
Wasserstein distance [3] as the core tool for metric learning.082
This framework cleverly utilizes the Sliced Wasserstein dis-083
tance as the core tool for metric learning. Specifically, we084
minimize the Sliced Wasserstein distance between samples085
based on random paths through sampling, achieving feature086
embedding alignment. We bridge four domains based on087
a strategy to address the challenges of cross-domain align-088
ment (spatial-temporal domain and text-visual domain).089

Our innovations are mainly concentrated in three as-090
pects: (1) Domain Alignment. The Sliced Wasserstein091
distance has the advantage of accurately capturing differ-092
ences in data distributions in high-dimensional spaces. Our093
method uses the Sliced Wasserstein distance as a bridge to094
map features from different domains into a unified metric095
space. This not only maintains temporal consistency by096
comparing instance embeddings between adjacent frames,097
achieving temporal alignment and effectively mitigating098
challenges such as progressive occlusion, but also learns099
intrinsic consistent features between modalities, narrowing100
the semantic gap and improving the fusion of text and visual101
information through modality alignment. (2) Weighting102
Mechanism: We introduce an importance weighting mech-103
anism to further enhance its discriminative ability when104
dealing with imbalanced data or data with significant fea-105
ture differences. In open-vocabulary video instance seg-106
mentation tasks, there may be significant feature differ-107
ences between different instances, and some instances may108
be more critical or informative. Through the importance109
weighting mechanism, our method can dynamically adjust110
the contribution of different instances in the metric space,111
allowing key instances to have greater weight in distance112
calculations. (3) High Efficiency: Our SWbridge inher-113
its the computational efficiency advantage of the Sliced114
Wasserstein distance, making it highly efficient when pro-115
cessing large-scale video data. Without introducing addi-116
tional network parameters, our method can handle video in117
an online manner while maintaining segmentation accuracy.118

Combining the aforementioned perspectives and innova-119
tions, we propose an open-vocabulary video instance seg-120
mentation method capable of bridging multiple domains.121
This method has achieved remarkable results on multiple122
datasets related to open-vocabulary and video tasks, such123
as LV-VIS [24], YT-VIS 2019/2021 [26], BURST [1], and124
OVIS [21]. Through a series of comprehensive ablation125
studies in §5.4, our extensive experimental evaluations have126
fully validated the robustness of our concept and the effec-127
tiveness of our framework.128
2. Related Works129

2.1. Open-Vocabulary Detection and Segmentation130

Open Vocabulary Detection (OVD) [9, 23] and Open Vo-131
cabulary Segmentation (OVS) [13, 18] are cutting-edge132
tasks in the field of computer vision, enabling models to133

be trained on images containing unannotated novel objects, 134
thereby breaking the closed-set constraint. This break- 135
through is primarily attributed to the application of weak 136
supervision signals, namely the utilization of image-text 137
pairs (such as image-caption pairs and image-level labels) 138
or large pre-trained Visual-Language Models (VLMs), such 139
as CLIP [22]. Supported by weak supervision signals, 140
methods for OVD and OVS can be categorized into four 141
main types [30]. The first type is region-aware training, 142
which learns object feature representations by exploring 143
the intrinsic links between image regions and text descrip- 144
tions without relying on the VLMs’ image encoder (VLMs- 145
IE) or direct object annotations. The second type is the 146
pseudo-labeling method, which enhances model general- 147
ization by generating pseudo-labels from preliminary pre- 148
dictions on unannotated images using both image-text pairs 149
and the VLMs-IE. The other two types are knowledge dis- 150
tillation and transfer learning. Knowledge distillation trans- 151
fers knowledge from pre-trained VLMs to new models or 152
tasks via a distillation mechanism, while transfer learning 153
applies knowledge learned by pre-trained models on spe- 154
cific tasks to new tasks or domains. Both rely on the VLMs- 155
IE and seldom involve direct training on image-text pairs. 156

Furthermore, zero-shot learning [28] addresses the 157
closed-set constraint in scene-aware tasks and differs from 158
open vocabulary methods. It prohibits access to weak su- 159
pervision signals during training, but can be converted into 160
Open-Vocabulary tasks upon gaining access, enhancing the 161
model’s generalization and recognition of novel objects. 162

2.2. Open-Vocabulary Video Instance Segmentation 163

Open-vocabulary video instance segmentation, as an emerg- 164
ing vision task, aims to simultaneously classify, track, and 165
segment arbitrary objects within open categories in videos, 166
attracting considerable attention from researchers in recent 167
years. OV2Seg [24] has taken the lead in this field by not 168
only constructing the Large Vocabulary Video Instance Seg- 169
mentation (LV-VIS) dataset but also proposing the first end- 170
to-end benchmark for open-vocabulary video instance seg- 171
mentation. OV2Seg method leverages the Mask2Former [6] 172
framework to extract class-agnostic masks and query em- 173
beddings, utilizes the CLIP text encoder for precise mask 174
classification, and achieves cross-frame instance tracking 175
through a long-term matching strategy. Subsequent re- 176
search has mostly followed this basic approach and ex- 177
panded upon it. OpenVIS [15] introduces a two-stage 178
framework, OVIS, which adopts a neighboring matching 179
strategy for instance tracking, effectively simplifying the 180
processing pipeline. BriVIS [8] models instances as Brow- 181
nian bridges and closely aligns bridge-level instance rep- 182
resentations with category texts through contrastive learn- 183
ing, also employing a neighboring matching strategy to en- 184
hance the accuracy of instance recognition. OVFormer [11] 185
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introduces a novel unified embedding alignment module186
that effectively addresses the domain gap between instance187
queries and text embeddings, demonstrating good practical-188
ity with its semi-online processing approach. However, the189
aforementioned methods primarily focus on bridging the190
domain discrepancy between text and vision, with insuffi-191
cient attention to spatiotemporal consistency among cross-192
frame instances. CLIP-VIS [31] improves upon this by in-193
troducing a time-topK enhanced matching strategy, which194
strengthens temporal modeling capabilities between frames195
and improves matching accuracy.196

We believe that the core of the open-vocabulary video197
instance segmentation task lies in simultaneously address-198
ing the alignment of the spatial-temporal domain and the199
text-visual domain. To this end, based on the concept of200
metric learning, we employ the Sliced Wasserstein distance201
to bridge various domains. This approach not only ef-202
fectively narrows the domain gap between modalities but203
also ensures spatio-temporal consistency of instances across204
frames, providing a novel solution for the open-vocabulary205
video instance segmentation task.206

2.3. Vision-Language Models207

The core of Visual Language Models (VLMs) [5] is their208
deep training on large-scale image-text paired data, en-209
abling the fusion and understanding of visual and textual210
information, and endowing them with powerful zero-shot211
object recognition capabilities [19]. CLIP [22], a prominent212
VLM, uses an image encoder to extract visual features and a213
text encoder to generate text embeddings, jointly construct-214
ing a cross-modal representation space. However, applying215
VLMs to open-vocabulary video instance segmentation is216
challenging. VLMs, primarily trained on images, struggle217
with understanding dynamic video scenes rich in spatiotem-218
poral information, and lack the capability to maintain object219
consistency across frames. Additionally, the domain shift220
between text and vision poses a significant challenge, po-221
tentially leading to biases in mapping textual information222
to the visual space. To overcome these limitations, we pro-223
pose a progressive approach that addresses the spatiotempo-224
ral consistency issue and the domain shift problem, enabling225
VLMs to better adapt to video instance segmentation tasks.226

3. Preliminaries227

3.1. Open-Vocabulary VIS Formulation228

Given a test video Dtest with T frames, the objective in229
Open-Vocabulary VIS is to accurately predict all N in-230
stances belonging to the categories in C = Cbase ∪ Cnovel231
by the trained model fθ. Cbase is the set of base (training)232
categories, and Cnovel is the set of novel categories that are233
not seen during training but may appear in the test videos.234

The prediction can be formulated as: 235

{{m1,m2, . . . ,mT }, c}Nn = fθ(Dtest), (1) 236

where {mt}Tt=1 is the segmentation masks, and c ∈ C. 237

3.2. Sliced Wasserstein Distance 238

One-dimensional Wasserstein Distance. For one- 239
dimensional probability measures µ and ν in Pp(R), the 240
p-Wasserstein distance is defined as: 241

Wp
p(µ, ν) =

∫ 1

0

|F−1
µ (z)− F−1

ν (z)|p dz, (2) 242

where Fµ and Fν are the cumulative distribution functions 243
(CDFs) of µ and ν. This formulation provides a closed form 244
for computing the Wasserstein distance in one-dimensional 245
spaces, making it well-suited for projected measures. 246

Sliced Wasserstein Distance. To generalize the Wasser- 247
stein distance to higher-dimensional measures, the Sliced 248
Wasserstein Distance (SWD) projects the measures µ and ν 249
in Pp(Rd) onto one-dimensional subspaces, and then aver- 250
ages the one-dimensional Wasserstein distances from these 251
projections. For µ, ν ∈ Pp(Rd), the SWD is defined as: 252

SWp
p(µ, ν) = Eθ∼U(Sd−1)

[
Wp

p(θ♯µ, θ♯ν)
]
, (3) 253

where θ♯µ and θ♯ν represent the push-forward measures of 254
µ and ν along direction θ ∈ Sd−1, the unit sphere in Rd. 255
This projection f(x) = θ⊤x maps points from Rd to R, 256
enabling the computation of Wasserstein distances in a one- 257
dimensional space. 258

Since the expectation in Eq. 3 is computationally expen- 259
sive, SWD is typically approximated by averaging over L 260
independent directions, θ1, . . . , θL, sampled from U(Sd−1): 261

ŜW
p

p(µ, ν;L) =
1

L

L∑
l=1

Wp
p(θl♯µ, θl♯ν), (4) 262

where each θl♯µ and θl♯ν are projected representations of µ 263
and ν along the direction θl. The number of projections L 264
controls the accuracy of the Monte Carlo approximation. 265

4. Method 266

As illustrated in Fig. 2, we propose the SWbridge frame- 267
work. Firstly, in §4.1, we integrate a category-agnostic fea- 268
ture extractor. Then, in §4.2, we introduce a spatio-temporal 269
bridging module that robustly establishes instance associa- 270
tions between adjacent frames, ensuring the consistency and 271
coherence of temporal information. Finally, in §4.3, we de- 272
sign a modal bridging module that performs fine-grained 273
semantic mapping across the text and visual domains to en- 274
hance cross-domain understanding and effectively address 275
the challenges posed by domain shifts. 276
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Figure 1. Overview of the proposed SWBridge framework (left) and the Sliced Wasserstein distance calculation process (right).

4.1. Class-agnostic Feature Extractor277

Given a video D consisting of T frames, {Vt ∈278
R3×H×W }Tt=1, where H and W denote the height and279
width of each frame, our model follows the conven-280
tional paradigm [11, 24, 31] by adopting the Mask2Former281
architecture as a class-agnostic feature extractor. The282
Mask2Former comprises three core components: an image283
encoder fCLIP, a pixel decoder fdecode, and a Transformer de-284
coder fTransformer. Specifically, the frozen CLIP model fCLIP285
processes each frame Vt independently to extract high-level286
visual features Ft. These features are then input to the pixel287
decoder fdecode, which upsamples them to produce a multi-288
scale feature map Dt preserving spatial details. Further-289
more, a set of learnable queries Q is initialized and fed into290
the Transformer decoder fTransformer along with the high-291
resolution feature map Dt. The Transformer decoder pro-292
cesses these inputs to generate the query embeddings Et.293

4.2. Spatio-Temporal Bridge294

After extracting category-agnostic features, the next chal-295
lenge is to construct a spatio-temporal bridge to estab-296
lish the correspondence between instances in consecutive297
frames t and t + 1. Given the dynamic nature of video298
content, objects may encounter occlusion, movement, and299
appearance changes. Therefore, it is particularly important300
to ensure the accuracy of instance tracking over time. To301
achieve this, we employ the Sliced Wasserstein metric.302

Initially, for the query embeddings of frames t and t +303
1, we perform random sampling to construct random paths304
Zi,j = qt,i − qt+1,j , where qt,i ∈ Et and qt+1,i ∈ Et+1305
are outputs of the Transformer decoder fTransformer. These306
paths are then normalized to obtain the unit direction θi,j =307

Zi,j

∥Zi,j∥2
, which serves as the projection direction. 308

Subsequently, we sample a new projection direction θ̂i,j 309

from σκ(θi,j ;
Zi,j

∥Zi,j∥2
). This introduces randomness, po- 310

tentially yielding different projection directions each time, 311
which aids in exploring multiple relative positional relation- 312
ships between feature points. This, in turn, may enhance the 313
model’s robustness and generalization capability. 314

With the projection direction θ̂i,j in hand, we proceed to 315
calculate the one-dimensional Wasserstein distance. This 316
involves projecting Mt and T along the θ direction to 317
obtain one-dimensional distributions θ♯µ and θ♯ν. These 318
distributions are then sorted, and the inverse functions of 319
their cumulative distribution functions (CDFs) are com- 320
puted. Finally, the one-dimensional Wasserstein distance 321
W p

p (θ♯µ, θ♯ν) is calculated using the formula: 322

W p
p (F,G) =

∫ 1

0

|F−1(t)−G−1(t)|p dt, (5) 323

where F and G are the CDFs of θ♯µ and θ♯ν, respectively, 324
and p is typically set to 2. 325

The next step involves importance weighting and Monte 326
Carlo estimation. We repeat the aforementioned process 327
L times to obtain L projection directions {θ1, . . . , θL} and 328
the corresponding set of one-dimensional Wasserstein dis- 329
tances. Each distance is then weighted with w, where w is 330
determined by an increasing function f(·). The weighted 331
average of these distances serves as the approximation of 332
SW, calculated using the formula: 333

SW =
1

L

L∑
l=1

w ·
f(W p

p (θl♯Mt, θl♯T ))∑L
j=1 f(W

p
p (θj♯Mt, θj♯T ))

, (6) 334

4



ICCV
#2556

ICCV
#2556

ICCV 2025 Submission #2556. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

where the weight w for each projection direction is:335

w =
f(W p

p (θl♯µ, θl♯ν))∑L
j=1 f(W

p
p (θj♯µ, θj♯ν))

. (7)336

Eq.6 yields a weighted Sliced Wasserstein distance that337
reflects the relationship between adjacent frames along ran-338
dom projection directions, considering both the geometric339
positions of data points and their differences through im-340
portance weighting.341

To establish instance correspondences, we compute the342
SW values between all pairs of instances across consecutive343
frames t and t+1, denoted as SWp

p(Et, Et+1). These values344
quantify the difference between instances along the projec-345
tion direction, with smaller SW values indicating stronger346
spatio-temporal consistency. By selecting the instance pairs347
with the smallest SW values, we identify those with the348
highest temporal alignment, ensuring robust and meaning-349
ful associations for instance tracking. Formally, the instance350
matching objective is:351

LTime = argmin SW(Et, Et+1), (8)352

where the selected pairs correspond to instances with the353
strongest spatio-temporal consistency, facilitating accurate354
tracking and correlation across frames. Our method thus355
emphasizes directions and features that capture significant356
inter-frame changes, effectively prioritizing instances that357
reflect spatial and appearance consistency. The adaptive358
weighting in Eq.6 further enhances tracking by highlight-359
ing subtle variations, ensuring robust temporal consistency.360

4.3. Text-Visual Bridge361

After bridging the temporal consistency between the spatial362
and temporal domains through the spatio-temporal bridge,363
we are still confronted with the challenge of addressing the364
modal domain shift between the text and visual domains.365
Video content, with its dynamic and diverse nature, intro-366
duces additional complexity as textual descriptions and vi-367
sual appearances can vary significantly. To ensure the ac-368
curate alignment between text and visual features, which is369
crucial in this context, we continue to leverage the Sliced370
Wasserstein metric. This metric has proven effective in371
our previous spatio-temporal bridging efforts, leading us to372
adopt it for modal alignment in our current method.373

Specifically, we first combine the temporal feature Dt374
with the query embeddings Et through multiplication to ob-375
tain the visual embeddings Mt. Subsequently, we apply376
a mask pooling operation to derive a class-agnostic mask377
Mt ∈ RN×D based on Mt and the frame features Ft.378
Lastly, we obtain the class text embeddings H ∈ RL×D379
generated by the CLIP text encoder, where L represents the380
number of categories.381

It is worth noting that our cross-modal alignment method382
bears similarity to the Sliced Wasserstein metric procedure383

detailed in §4.2. We begin by defining the projection path 384
of the cross-modal module as Zc

i,j = mt,i − ht,j . To ob- 385
tain the projection direction, we normalize this path, result- 386
ing in θi,j . Given the relatively small sizes of Mt and H, 387
this module departs from the random sampling approach 388
and instead adopts a full-path full-projection strategy. Upon 389
successfully obtaining the projection direction θ, we pro- 390
ceed to calculate the one-dimensional Wasserstein distance. 391
We then apply importance weighting and incorporate the 392
Monte Carlo estimation method in our subsequent calcula- 393
tions. Following the logic of Eq. 6 and Eq. 7, we ultimately 394
compute the weighted average as an approximation of the 395
Sliced Wasserstein distance. 396

Additionally, similar to Eq. 8, we introduce an additional 397
loss function LModal to constrain the modality alignment 398
process. This loss function is defined as: 399

LModal = argmin SW(Mt,H). (9) 400

4.4. Loss Function 401

To mine similarity relations in cross-text video pairs, we 402
draw on the successful experience of cross-modal learning, 403
as demonstrated in [8]. To this end, we introduce a cross- 404
text similarity alignment loss based on contrastive learning. 405
The loss function is formulated as follows: 406

LVT = − 1

NL

∑
i,j

log
exp(dij/τ)∑

k exp(dik/τ) +
∑

l exp(djl/τ)
,

(10) 407
where dij = sim(mi,hj), sim(·, ·) represents the similarity 408
metric function, and τ is the temperature hyperparameter. 409

The Total Loss LTotal is a weighted combination of mul- 410
tiple loss components, which can be written as: 411

LTotal = αTLTime + αMLModal + αV LVT + αSLSeg, (11) 412

where LSeg represents the binary cross-entropy and dice 413
losses for mask prediction, following the approach in [24]. 414
The coefficients αT , αM , αV , and αS are the corresponding 415
weighting factors for each loss component. 416
Computational complexity. In our Sliced Wasserstein 417
metric process, the core steps involve matrix operations and 418
sorting procedures. Initially, we generate a set of initial pro- 419
jection vectors by randomly selecting samples and comput- 420
ing the differences among these samples. The complexity of 421
this selection operation is O(L), while the complexity of the 422
difference calculation is O(L · D), where L represents the 423
number of projection vectors and D is the dimensionality of 424
the samples. Subsequently, we proceed to the normalization 425
and resampling phase, which also maintains a complexity of 426
O(L · D). When calculating the one-dimensional Wasser- 427
stein distance, we need to perform matrix multiplication, a 428
step with a complexity of O(N ·D ·L), where N is the num- 429
ber of samples. Additionally, we need to sort the projected 430
data, with a sorting operation complexity of O(N logN). 431
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Table 1. Statistics of the dataset. Cat. and Ins. represent the
number of categories and instances respectively.

Dataset Videos Cat. Ins. Train Val. Test

LV-VIS 4,828 1,196 - 3,083 837 908
YT-VIS 19 2,883 40 4,883 2,238 302 343
YT-VIS 21 3,859 40 8,171 2,985 421 453
OVIS 901 25 5,223 607 140 154
BURST 2,914 482 16,000 500 993 1,421

Although in practical applications, since L is usually much432
smaller than N , the impact of the sorting operation on the433
overall complexity may be relatively minor. In summary,434
the overall complexity of our method can be approximated435
as O(N ·D ·L+N logN). In practical applications, as the436
number of samples N and the number of projection vectors437
L increase, the computational cost of matrix multiplication438
will become dominant. Although sorting and other opera-439
tions with linear complexity also exist, their contribution to440
the overall complexity is relatively small.441

5. Experiments442

5.1. Datasets and Evaluation Metrics443

We initially train our method on a combined set of common444
and frequent categories derived from the LVIS dataset [16].445
Subsequently, we assess the performance of our method on446
both the validation and test sets of the LV-VIS dataset [24],447
as well as the validation set of several datasets, namely448
OVIS [21], YT-VIS 2019/2021 [26], and BURST [1]. The449
statistics of the evaluation dataset are detailed in Table 1.450
LVIS [16] dataset comprises 1,203 object categories, which451
significantly exceeds the number of categories in COCO.452
Following ViLD[14], we select 866 frequent and common453
categories as the training categories and reserve the remain-454
ing 337 rare categories as novel categories.455
Evaluation Metrics. Following [24], we present the mean456
Average Precision (AP ) for all categories in aggregate. Ad-457
ditionally, we report on APn for the novel category.458

5.2. Implementation Details459

In our implementation, the CLIP image encoder and text460
encoder are kept frozen, whereas the pixel decoder, trans-461
former decoder, and mask prediction head undergo training.462
This strategy effectively harnesses the pre-trained capabili-463
ties of CLIP for mask classification and query matching, uti-464
lizing query embeddings, thereby obviating the need for cat-465
egory and identity annotations. The CLIP model employed466
in our framework adopts the ViTB/32 architecture for both467
the text and image encoders. Throughout the training pro-468
cess, the parameters of these encoders remain frozen. For469
optimization purposes, we utilize the AdamW optimizer,470

with the base learning rate set to 110−4. τ = 0.05. αT , 471
αM , αV , and αS are all set to 1 based on grid parame- 472
ter tuning experience. Following a step-wise learning rate 473
schedule, this rate is subsequently reduced by a factor of 10 474
at 90% and 95% of the total training steps. To assess the 475
robustness and generality of our proposed method, we con- 476
duct experiments using two distinct backbones: ResNet-50 477
and SwinB. Our experimental setup is analogous to that of 478
OV2Seg [24]. All experiments are conducted on a high- 479
performance machine equipped with eight NVIDIA A800 480
GPUs, each possessing 80GB of memory. To facilitate a 481
fair comparison, we also present the inference speed of our 482
method when executed on a single NVIDIA A100 GPU. 483

5.3. Main Results 484

The experimental results presented in Table 2 provide 485
a comprehensive comparison of our proposed SWBridge 486
method with several state-of-the-art approaches across mul- 487
tiple video instance segmentation datasets. A significant 488
finding reveals that SWBridge exhibited superior perfor- 489
mance compared to existing methods across 19 out of 22 490
evaluation metrics in various settings. Furthermore, it at- 491
tained suboptimal results in the remaining three metrics, 492
thereby underscoring its efficacy in addressing the inher- 493
ent complexity associated with Open-Vocabulary VIS. This 494
result not only verifies the effectiveness of SWBridge in its 495
design, but also shows that it can adapt well to the character- 496
istics of different datasets, such as changes in video length, 497
number of instances, scene complexity, etc. 498

LV-VIS. When trained on the diverse and extensive LVIS 499
dataset, which includes a large number of frequent and com- 500
mon categories, SWBridge exhibits robust generalization 501
capabilities. This is particularly evident in its performance 502
on the LV-VIS dataset, where it achieves the highest AP for 503
both the validation and test sets, including the novel cate- 504
gories (APn). The superior performance on LV-VIS under- 505
scores SWBridge’s ability to effectively recognize and seg- 506
ment objects from both base and novel categories, even in 507
the presence of a significant number of unseen classes dur- 508
ing training. Although powerful backbone networks such 509
as ConvNeXt-B can enhance performance, we finds that 510
the Swin-B backbone network, when combined with the 511
SWBridge, yields even better results. This indicates that 512
SWBridge has a synergistic effect with the backbone net- 513
work, enabling more efficient capture of spatio-temporal 514
features in videos, and the performance improvement ex- 515
ceeds that achieved by mere network upgrades. 516

YT-VIS. SWBridge demonstrates superior performance on 517
the YT-VIS2019 and YT-VIS2021 datasets, further attest- 518
ing to its strong capability in handling video instance seg- 519
mentation tasks with a moderate number of categories. Re- 520
markably, this method achieves competitive performance 521
levels without the need for fine-tuning on specific video 522
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Table 2. Comparison with state-of-the-art methods. All the methods are trained on image dataset LVIS and evaluated on the video
instance segmentation datasets directly, i.e., they are not fine-tuned using the training set of each dataset.

Method Backbone
LV-VIS val. LV-VIS test YT-VIS2019 YT-VIS2021 OVIS BURST
AP APn AP APn AP APn AP APn AP AP APn

DetPro[10]-SORT[2] R50 6.4 3.5 5.8 2.1 - - - - - - -
Detic[29]-SORT[2] R50 6.5 3.4 5.7 2.1 14.6 3.5 12.7 3.1 6.7 1.9 2.5
DetPro[10]-OWTB[20] R50 7.9 4.2 7.0 2.9 - - - - - - -
Detic[29]-OWTB[20] R50 7.7 4.2 7.0 2.8 17.9 4.5 16.7 5.8 9.0 2.7 1.8
Detic[29]-XMem[7] R50 8.8 5.4 7.7 3.6 - - - - - - -
OV2Seg[24] R50 14.2 11.9 11.4 8.9 27.2 11.1 23.6 7.3 11.2 3.7 2.4
OVFormer[11] R50+ViT-B - - - - 34.8 16.5 29.8 15.7 15.1 - -
CLIP-VIS R50 19.5 24.2 14.6 15.9 32.2 23.8 30.1 17.9 14.1 5.2 7.7
SWBridge(Our) R50 20.7 24.9 15.4 16.2 33.4 24.0 30.9 18.4 15.2 5.5 8.2

Detic[29]-SORT[2] SwinB 12.8 6.6 9.4 4.7 23.8 7.9 21.6 9.8 11.7 2.5 1.0
Detic[29]-OWTB[20] SwinB 14.5 8.5 11.8 6.1 30.0 9.7 27.1 11.4 13.6 3.9 2.4
Detic[29]-XMem[7] SwinB 16.3 10.6 13.1 7.7 - - - - - - -
OV2Seg[24] SwinB 21.1 16.3 16.4 11.5 37.6 21.3 33.9 18.2 17.5 4.9 3.0
OVFormer[11] SwinB+ViT-B - - - - 44.3 21.5 37.6 18.3 21.3 - -
CLIP-VIS ConvNeXt-B 32.2 40.2 25.3 30.6 42.1 27.5 37.9 22.0 18.5 8.3 12.7
SWBridge(Our) SwinB 33.0 40.5 26.0 31.0 43.0 28.0 38.5 22.5 19.7 8.3 12.8

datasets. This characteristic indicates that SWBridge can523
effectively leverage image-based training data and success-524
fully generalize to video data, thereby significantly reduc-525
ing the reliance on extensive video-specific annotations.526
In comparison with state-of-the-art methods, although OV-527
Former achieves excellent results by incorporating an ad-528
ditional CLIP image encoder, SWBridge still outperforms529
CLIP-VIS in terms of the AP metric under similar model530
architectures. More notably, in the APn metric, which per-531
tains to the segmentation of new class instances, our bridge532
strategy comprehensively surpasses the performance gains533
brought about by the CLIP encoder.534

OVIS. Since the categories of the OVIS dataset highly over-535
lap with the LVIS dataset used for training, we only reports536
the AP (average precision) performance metric. SWBridge537
even outperformed OVFormer with the extra CLIP on the538
R50 backbone and was second only to OVFoemer on the539
SwinB backbone. SWBridge’s ability to maintain high ac-540
curacy under these conditions demonstrates its robustness541
in complex visual environments, where the visibility of ob-542
jects changes significantly over time.543

BURST. The BURST dataset, with its diverse and uncom-544
mon categories, poses a unique challenge due to the wide545
range of object types. SWBridge’s competitive perfor-546
mance on this dataset, especially in terms of APn, suggests547
that it can effectively manage the intricacies of uncommon548
object categories, enhancing its applicability to real-world549
scenarios where encountering unseen objects is common.550

Table 3. Comparison of ablation results of bridge strategy.

Variant LV-VIS OVIS BURST
AP APn AP AP APn

Baseline 8.5 10.2 5.3 2.6 2.3
+ Spatio-Temporal Bridge 15.0 18.0 10.2 3.1 5.4
+ Text-Visual Bridge 19.9 23.3 14.2 5.3 7.9
+ LV T in Eq. 10 20.7 24.9 15.2 5.5 8.2

5.4. Ablation Study 551

Our ablation experiments continue to use the LVIS dataset 552
for training with ResNet50 as the Backbone and are eval- 553
uated on the validation sets of the LV-VIS, OVIS, and 554
BURST datasets, aiming to measure the performance of the 555
proposed SWBridge more comprehensively and rigorously. 556

Effectiveness of Bridge Strategy. We first established a 557
baseline variant that removed the Spatio-Temporal Bridge 558
bridge and Text-Visual Bridge modules, while discarding 559
the additional contrast loss LV T and retaining only the ba- 560
sic LSeg loss function. In order to achieve instance associa- 561
tion, we adopted the memory module proposed in OV2Seg 562
to replace the original spatiotemporal bridge function. 563

The experimental results presented in Table 4 con- 564
firm the significant effectiveness of each component in 565
the SWBridge method. Specifically, upon integrating the 566
spatio-temporal bridge module into the baseline variant, we 567
observed notable improvements in both AP and APn met- 568
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Table 4. Impact of ablation results of Importance Weighting.

Variant LV-VIS OVIS BURST
AP APn AP AP APn

w/o Weight 15.3 17.0 12.3 4.5 5.3
w/o Weight in §4.1 18.5 22.3 13.7 4.9 6.8
w/o Weight in §4.3 19.6 23.5 14.5 5.2 7.5
SWBridge(Our) 20.7 24.9 15.2 5.5 8.2

Table 5. Impact of ablation results of Importance Weighting.

Variant LV-VIS OVIS BURST
AP APn AP AP APn

Huberized 18.8 22.4 13.8 4.7 6.4
Cosine 18.6 22.2 13.9 4.8 6.5
Wasserstein 19.5 23.3 14.4 5.1 7.0
Sliced Wasserstein 20.7 24.9 15.2 5.5 8.2

rics across all datasets. This outcome indicates that the569
spatio-temporal bridge module efficiently captures spatio-570
temporal correlations between video frames, thereby aiding571
the model in more accurately understanding and tracking572
the dynamic changes of instances within videos. Further-573
more, the model’s performance was significantly enhanced574
once again after adding the text-visual bridge module on575
top of the spatio-temporal bridge module. By introduc-576
ing textual information, the text-visual bridge provides the577
model with rich semantic cues, greatly enhancing its accu-578
racy in recognizing and understanding instances. Addition-579
ally, LV T synergizes with other bridge strategy modules,580
collectively driving a comprehensive improvement in the581
model’s performance and generalization.582

Impact of SW Weighting Mechanism. Table 4 shows that583
without a weighting mechanism in the spatio-temporal or584
text-visual bridges, the model struggles to utilize key infor-585
mation from instances with marked feature differences, lim-586
iting performance. However, incorporating the weighting587
mechanism into both bridges notably improves model per-588
formance. This indicates the mechanism helps the model589
focus on crucial instances with significant feature differ-590
ences, assigning them greater weights during distance cal-591
culation. This adjustment enhances the model’s accuracy592
and efficiency in processing complex data.593

Comparison of Distance Measurement. In Tab. 5, we594
compare distance metrics for SWBridge. Huberized dis-595
tance is sensitive to large differences, Cosine similarity ig-596
nores feature magnitudes, and Wasserstein distance misses597
local details. Our SW distance comprehensively consid-598
ers high-dimensional feature differences with importance599
weighting, making it robust for complex domain shifts.600

Sensitivity analysis of L. In the bridge strategy, we ablated601
the number of sampling iterations to explore its relation-602
ship with model performance (Fig.2). Results show a non-603

600 800 1000 1200 1400 1600

LV-VIS AP LV-VIS AP_n OVIS AP
BURST AP  BURST AP_n

Figure 2. Ablation experiment on the number of random projec-
tion sampling L.

Table 6. Comparison of accuracy, FLOPs, and inference speed
on the validation set of the LV-VIS dataset.

Method Backbone AP FLOPs FPS

OV2Seg[24] R50 14.2 238.2G 26.1
CLIP-VIS [31] R50 19.5 244.1G 31.4
SWBridge (Our) R50 20.7 241.8 24.5

OV2Seg[24] SwinB 21.1 448.2G 17.2
CLIP-VIS [31] ConvNeXt-B 32.2 409.3G 21.0
SWBridge (Our) SwinB 20.7 457.2 16.3

linear relationship: increasing iterations significantly im- 604
proves AP and APn across all datasets. However, excessive 605
iterations introduce noise and computational burden, poten- 606
tially causing overfitting or reducing training efficiency. 607
Complexity Interpretation. On the LV-VIS dataset 608
(Tab. 6), SWBridge demonstrates unique advantages. 609
Tested on an A100 GPU, it exhibits comparable or better ac- 610
curacy than leading methods with R50 or SwinB backbones. 611
Notably, the SwinB version has significantly higher FPS, 612
attributed to our bridge strategy that achieves cross-domain 613
consistency and inherits SW optimization efficiency. 614

6. Conclusion 615

In this paper, we propose an innovative Sliced Wasser- 616
stein Bridging Learning Framework (SWbridge), aimed at 617
tackling the challenging task of Open-Vocabulary Video 618
Instance Segmentation. Inspired by metric learning, our 619
framework utilizes the Sliced Wasserstein distance as a 620
core tool to effectively bridge the spatial-temporal and text- 621
visual domains involved in the task. Through domain align- 622
ment, we successfully map features from different domains 623
into a unified metric space, preserving temporal consistency 624
and learning intrinsic consistent features across modalities. 625
This significantly improves the fusion of text and visual in- 626
formation, addressing one of the core challenges in Open- 627
Vocabulary VIS. Looking ahead, we plan to explore better 628
optimization methods for the Sliced Wasserstein distance to 629
further enhance the performance of our framework. 630
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Pfister. Sliced and radon wasserstein barycenters of mea-640
sures. Journal of Mathematical Imaging and Vision, 51:22–641
45, 2015. 2642

[4] Silvia Bucci, Mohammad Reza Loghmani, and Tatiana Tom-643
masi. On the effectiveness of image rotation for open set644
domain adaptation. In ECCV, 2020. 1645

[5] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,646
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:647
Universal image-text representation learning. In ECCV,648
2020. 3649

[6] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexan-650
der Kirillov, Rohit Girdhar, and Alexander G Schwing.651
Mask2former for video instance segmentation. arXiv652
preprint arXiv:2112.10764, 2021. 2653

[7] Ho Kei Cheng and Alexander G Schwing. Xmem: Long-654
term video object segmentation with an atkinson-shiffrin655
memory model. In ECCV, 2022. 7656

[8] Zesen Cheng, Kehan Li, Hao Li, Peng Jin, Chang Liu, Xi-657
awu Zheng, Rongrong Ji, and Jie Chen. Instance brownian658
bridge as texts for open-vocabulary video instance segmen-659
tation. arXiv preprint arXiv:2401.09732, 2024. 1, 2, 5660

[9] Penghui Du, Yu Wang, Yifan Sun, Luting Wang, Yue Liao,661
Gang Zhang, Errui Ding, Yan Wang, Jingdong Wang, and Si662
Liu. Lami-detr: Open-vocabulary detection with language663
model instruction. In ECCV, 2024. 2664

[10] Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao,665
and Guoqi Li. Learning to prompt for open-vocabulary ob-666
ject detection with vision-language model. In CVPR, 2022.667
7668

[11] Hao Fang, Peng Wu, Yawei Li, Xinxin Zhang, and Xiankai669
Lu. Unified embedding alignment for open-vocabulary video670
instance segmentation. In ECCV, 2024. 1, 2, 4, 7671
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