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Abstract
Video instance segmentation presents significant challenges in com-
plex and dynamic environments, where instances experience pro-
gressive occlusion, either from objects obstructing each other or
due to changes in the camera’s viewpoint. Current state-of-the-
art methods rely on memory bank mechanisms, but we still look
forward to new paradigms that have the ability to capture and
utilize structural information, the ability to model complex rela-
tionships, and the flexibility to adapt to dynamic scenarios. To
this end, we propose the Weighted Structure Inference method for
Video Instance Segmentation. We build on high-order structural
relationships by constructing hypergraphs for each video frame,
enabling the capture of complex interactions that go beyond tradi-
tional pairwise methods. To model intricate dynamics, we introduce
Weighted Sheaf Hypergraph Convolution, which enhances the hi-
erarchical and structural information embedded in the hypergraph.
Furthermore, we ensure spatio-temporal consistency by employing
a dynamic inference mechanism based on Weighted Sliced Wasser-
stein distance to compare structural features across adjacent frames.
Our method preserves the topological characteristics of occlusion
instances and improves the reliability of instance tracking across
frames. Experimental results demonstrate that our method outper-
forms existing video instance segmentation frameworks in both
Video Instance and Panoptic Segmentation tasks.

CCS Concepts
• Computing methodologies → Activity recognition and un-
derstanding.
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1 Introduction
In the realm of computer vision, spatial intelligence and embodied
perception are gaining increasing attention due to their potential to
enhance a system’s ability to understand and interact with complex
environments [6]. This study focuses on a fundamental aspect of
this field: Video Instance Segmentation (VIS). Video instance seg-
mentation aims to accurately segment all target instances within a
video, which is crucial for applications such as autonomous driving,
video editing, and surveillance [50]. Accurate instance segmen-
tation enables systems to distinguish between individual objects,
track their movements, and understand their interactions, making
it indispensable in dynamic environments. Particularly in complex,
dynamic open scenes, the background plays a significant role in
segmentation tasks, as it is highly variable and can significantly
contribute to the overall scene complexity [48].

Video instance segmentation faces numerous challenges, par-
ticularly due to Progressive Occlusion. As shown in Fig.1, pro-
gressive occlusion can be caused by both instance occlusion, where
instances block each other, and camera occlusion, where instances
move in and out of the camera’s view. These types of occlusion
complicate segmentation by making parts of the instances invisible.
Maintaining spatio-temporal consistency across frames is crucial
for accurate instance tracking in such cases [33]. Current state-
of-the-art methodologies predominantly rely on memory banks
or attention-based mechanisms to address these challenges. For
instance, approaches such as VISAGE [23] leverage appearance-
object relationships, while TCOVIS [24] employs dual local-global
matching strategies. Another notable method, CTVIS [45], con-
structs identity matrices to explicitly model the gradual appearance
and disappearance of objects over time. Though effective and main-
stream, these methods leave room for new paradigms. We still
look forward to the emergence of new paradigms that can provide
new perspectives for analyzing the motion patterns of instances
and their spatiotemporal relationships, which may improve the
performance and robustness of video instance segmentation tasks.
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Figure 1: Progressive occlusion can be further subdivided into
two categories: object occlusion, which is formed by objects
occluding each other; and camera occlusion, which is caused
by changes in the camera’s viewpoint or by objects moving in
and out of the frame. Masking of externally exposed visual
parts (blue boxes) is not sufficient to characterize the whole
object (yellow boxes).

With this in mind, we draw inspiration from the inherent struc-
tural richness of videos [33]. Our goal is to develop a novel paradigm
that embodies three key properties at the same time: the ability to
capture and utilize structural information, the ability to model com-
plex relationships, and the flexibility to adapt to dynamic scenes.
In the task of video instance segmentation, capturing and utilizing
structural information can accurately locate the position and form
of instances in space and time for camera occlusion, modeling com-
plex relationships can effectively handle interactions and occlusions
between instances, and the flexibility to adapt to dynamic scenes
ensures that the model remains stable and efficient in complex and
changing environments, thereby comprehensively improving the
performance and robustness of video instance segmentation.

In this paper, we propose the Weighted Structure Inference (WS-
Infer) method to address these challenges by leveraging high-order
structural relationships between instances in adjacent frames. WS-
Infer employs a decoupling strategy, whereby a hypergraph is con-
structed from instance queries generated by a segmenter. To capture
complex dynamics, we introduce weighted sheaf hypergraph con-
volution, which leverages the concept of cellular sheaves [29] to
model hierarchical and structural information, allowing for the
extraction of enriched structural features. Additionally, we achieve
instance spatio-temporal consistency and alleviate the challenge
of progressive occlusion by using a dynamic inference mechanism
based on Weighted Sliced Wasserstein distance to compare struc-
tural features across adjacent frames.

Our contributions are organized into three main aspects: (I)
Weighted Temporal Consistency for Occlusion: To handle pro-
gressive occlusion, WSInfer introduces an importance-weighted
strategy that emphasizes key structural contributions to enhance
feature representation. First, we apply hypergraph convolution
with weighted hyperedges to extract enriched structural features,
highlighting the impact of significant interactions. Next, we use
a weighted Sliced Wasserstein Distance metric to ensure spatio-
temporal consistency across adjacent frames. This dual weighting
mechanism enhances the framework’s ability to address complex
occlusions, resulting in improved segmentation performance in
dynamic and occlusion-heavy scenes. (II) Hypergraph Convolu-
tion for Modeling Complex Dynamics: We introduce weighted

hypergraph convolution based on cellular sheaves to capture local
higher-order subtleties. The cellular sheaves enrich the hypergraph
nodes and edges with richer hierarchical and structural information,
enabling a more accurate representation of the intricate relation-
ships between instances. By integrating these subtleties into the
hypergraph Laplacian operator, we ensure the convolution pro-
cess captures hidden higher-order structures, facilitating effective
feature propagation and aggregation within the hypergraph. (III)
Preserving Spatio-Temporal Consistency through Dynamic
Inference: To preserve spatio-temporal consistency across frames,
we employ a dynamic inference mechanism that uses weighted
Sliced Wasserstein distance to compare structural features across
adjacent frames. Our method maintains the hypergraph’s structural
features while accurately capturing associative differences between
instances. By preserving these structural invariants, instances un-
dergoing occlusion are accurately associated across frames, thereby
ensuring reliable instance tracking.

Incorporating these innovations, we present a flexible and ef-
ficient framework in §4, achieving remarkable results on widely
recognized VIS and VPS tasks in §5.3. Accompanied by a series of
comprehensive ablation studies in §5.4, our extensive experiments
confirm the effectiveness and robustness of our proposed weighted
structure inference method in addressing the challenges of video
instance segmentation and panoptic segmentation.

2 Related Works
2.1 Video Instance Segmentation
Video instance segmentation, a cornerstone of advanced computer
vision applications, has made significant strides in addressing chal-
lenges in dynamic scenes [34]. Among these challenges, progres-
sive occlusion remains a persistent issue, requiring sophisticated
methods for reliable and continuous instance association and track-
ing.

Early approaches, such as MaskTrack R-CNN [43], laid the foun-
dation for detection and tracking by incorporating temporal in-
formation, providing a starting point for tackling occlusion. Later,
models like CrossVIS [44] and SipMask [5] advanced the field by
improving instance association and real-time efficiency through
cross-frame feature utilization and one-stage segmentation back-
bones [35]. Transformer-based models marked a further leap for-
ward. VisTR [37] introduced transformers but faced challenges with
complex motion, while SeqFormer [39] leveraged deformable atten-
tion to better capture spatial and temporal interactions. IFC [19]
introduced inter-frame communication to align instance.

More recently, decoupling strategies, including Mask2Former-
VIS [8], MinVIS [18], IDOL [40], and ROVIS [46], have adopted
detect-then-associate approaches with explicit queries, significantly
improving segmentation continuity. GenVIS [15] further advanced
the field by eliminating heuristic matching and using refined in-
stance representations for more effective inter-frame association.
DVIS [48, 49] introduced a referring tracker to enhance frame associ-
ation by denoising instance representations, while DVIS-DAQ [51]
explicitly anchored new and disappearing objects to handle occlu-
sions more effectively. [11] and [47] extend the boundaries of video
instance segmentation methods from the perspective of SAM and
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lightweight design. VISAGE [23] focuses on leveraging appearance-
object relationships to enhance segmentation. TCOVIS [24], on
the other hand, employs dual local-global matching strategies to
improve accuracy. Meanwhile, CTVIS [45] constructs identity ma-
trices to explicitly track the gradual appearance and disappearance
of objects over time. However, the prevailing methodologies in this
field predominantly rely on memory/prototype mechanisms, thus
underscoring the need for novel paradigms that can offer fresh
perspectives and advancements in video instance segmentation.

Adhere to this intention, our proposedWSInfermethod leverages
hypergraph-based representations to model high-order relation-
ships between instances. By incorporating hypergraph convolution
and efficient temporal consistency inference, WSInfer effectively
addresses the challenges of progressive occlusion, ensuring robust
instance tracking and segmentation across dynamic video scenes.

2.2 Hypergraph Learning
Hypergraph neural networks (HGNNs)[12] extend traditional graph
neural networks (GNNs) bymodeling high-order interactions, which
conventional GNNs, limited to pairwise relationships, cannot ef-
fectively capture. Unlike traditional graphs, hypergraphs use hy-
peredges to connect multiple nodes, enabling the representation of
complex, multifaceted relationships. This transition from GNNs to
HGNNs represents a significant advancement in capturing intricate
data interactions, making HGNNs particularly valuable for appli-
cations that require the representation of complex relationships,
such as action recognition and visual perception[7, 14, 20, 30]. For
example, Hao et al.[12] used Hyper-GNN to model non-physical
dependencies in action recognition, while An et al.[2] employed
multi-hypergraph fusion to capture complex relationships in person
re-identification. The ability of HGNNs to model higher-order rela-
tionships aligns well with the challenge of progressive occlusion in
video instance segmentation, which requires robust tracking and
segmentation in dynamic environments. This capability motivates
the adoption of hypergraphs in our proposed framework.

3 Preliminaries
3.1 Cellular Sheaves on Hypergraphs
A hypergraph is defined asH = (V, E,W), whereV represents
the set of nodes, E is the set of hyperedges with 𝑛 = |V| and𝑚 =

|E |, and W defines the weights of the hyperedges. A hyperedge
𝑒 ∈ E can connect any number of nodes. The number of nodes 𝛿𝑒 in
each hyperedge, denoted as |𝑒 |, is called the degree of the hyperedge.
A cellular sheaf F [10, 42] over a hypergraph H assigns vector
spaces, referred to as stalks, to both nodes and hyperedges, and
defines linear maps, known as restriction maps, between them:

• Node/Hyperedge Stalks: Each node 𝑣 ∈ V and each hy-
peredge 𝑒 ∈ E is assigned a vector space F (·) = R𝑑 , repre-
senting their respective 𝑑-dimensional feature.

• Restriction Maps: For every node 𝑣 in hyperedge 𝑒 , a linear
map F𝑣⊴𝑒 = MLP(𝑣, 𝑒) ∈ R𝑑×𝑑 is defined, linking the node
and hyperedge feature spaces.

This sheaf structure allows the modeling of local consistency
constraints and higher-order interactions within the hypergraph,

providing a solid mathematical framework for complex video data
understanding and analysis.

3.2 Sheaf Laplacian and Feature Propagation
The linear sheaf hypergraph Laplacian LF ∈ R𝑑×𝑑 for a hyper-
graph H , normalized by 𝛿𝑒 , is defined as:

LF
𝑢𝑣 =


− ∑
𝑒 ;𝑢,𝑣∈𝑒

1
𝛿𝑒
F𝑇
𝑢⊴𝑒F𝑣⊴𝑒 , 𝑢 ≠ 𝑣,∑

𝑒 ;𝑣∈𝑒
1
𝛿𝑒
F𝑇
𝑣⊴𝑒F𝑣⊴𝑒 , 𝑢 = 𝑣 .

(1)

The linear sheaf Laplacian operator is described by applying LF

to a feature 𝑥 ∈ R𝑛×𝑑 as follows:

LF
𝑣 =

∑︁
𝑒 ;𝑣∈𝑒

1
𝛿𝑒

F𝑇
𝑣⊴𝑒

( ∑︁
𝑢∈𝑒,𝑢≠𝑣

(F𝑣⊴𝑒𝑥𝑣 − F𝑢⊴𝑒𝑥𝑢 )
)
. (2)

This formulation enables the aggregation of information from
neighboring nodes while preserving higher-order relationships and
enforcing local consistency. As a result, sheaf-based hypergraph
neural networks (SHNNs) are effective for modeling complex data
interactions.

3.3 Sliced Wasserstein Distance
One-dimensional Wasserstein Distance. For one-dimensional
probability measures 𝜇 and 𝜈 in P𝑝 (R), the 𝑝-Wasserstein distance
is defined as:

W𝑝
𝑝 (𝜇, 𝜈) =

∫ 1

0
|𝐹−1𝜇 (𝑧) − 𝐹−1𝜈 (𝑧) |𝑝 𝑑𝑧, (3)

where 𝐹𝜇 and 𝐹𝜈 are the cumulative distribution functions (CDFs)
of 𝜇 and 𝜈 . This formulation provides a closed form for computing
the Wasserstein distance in one-dimensional spaces, making it well-
suited for projected measures.
Sliced Wasserstein Distance. To generalize the Wasserstein dis-
tance to higher-dimensional measures, the Sliced Wasserstein Dis-
tance (SWD) [4] projects the measures 𝜇 and 𝜈 in P𝑝 (R𝑑 ) onto
one-dimensional subspaces, and then averages the one-dimensional
Wasserstein distances from these projections. For 𝜇, 𝜈 ∈ P𝑝 (R𝑑 ),
the SWD is defined as:

SW𝑝
𝑝 (𝜇, 𝜈) = E𝜃∼U(S𝑑−1 )

[
W𝑝

𝑝 (𝜃♯𝜇, 𝜃♯𝜈)
]
, (4)

where 𝜃♯𝜇 and 𝜃♯𝜈 represent the push-forward measures of 𝜇 and
𝜈 along direction 𝜃 ∈ S𝑑−1, the unit sphere in R𝑑 . This projection
𝑓 (𝑥) = 𝜃⊤𝑥 maps points from R𝑑 to R, enabling the computation
of Wasserstein distances in a one-dimensional space.

Since the expectation in Eq. 4 is computationally expensive,
SWD is typically approximated by averaging over 𝐿 independent
directions, 𝜃1, . . . , 𝜃𝐿 , sampled from U(S𝑑−1):

ŜW𝑝

𝑝 (𝜇, 𝜈 ;𝐿) =
1
𝐿

𝐿∑︁
𝑙=1

W𝑝
𝑝 (𝜃𝑙 ♯𝜇, 𝜃𝑙 ♯𝜈), (5)

where each 𝜃𝑙 ♯𝜇 and 𝜃𝑙 ♯𝜈 are projected representations of 𝜇 and 𝜈
along the direction 𝜃𝑙 . The number of projections 𝐿 controls the
accuracy of the Monte Carlo approximation.
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Figure 2: The framework of our WSInfer. In the temporal consistency inference module, the direction of the arrow indicates
the projection direction 𝜃𝑖, 𝑗 , and the thickness of the arrow indicates the projection weights𝑤𝑖, 𝑗 .

4 Method
Our WSInfer method leverages Mask2Former [9] as the segmenter,
following a decoupling strategy. We extract instance-level queries
{Q𝑡 }𝑇𝑡=1, where 𝑡 ∈ [1,𝑇 ] denotes the timestep. Each query Q𝑡 =

{q𝑡,𝑖 }
𝑁𝑞

𝑖=1 ∈ R𝑑 represents the 𝑁𝑞 queries in a frame, with q𝑡,𝑖 ∈ R𝑑

derived from Mask2Former’s output embeddings, encapsulating
appearance and spatial features. Using these queries, we construct a
hypergraph, perform hypergraph convolution to enhance structural
features (§4.1), and enforce spatio-temporal consistency (§4.2). The
overall pipeline and objective function (§4.3) are illustrated in Fig. 2.

4.1 Building Higher-Order Relationships
Hypergraph Construction. To construct the hypergraphH𝑡 =

(V𝑡 , E𝑡 ,W𝑡 ) from Q𝑡 , we define the nodes setV𝑡 , where each node
𝑣𝑡,𝑖 corresponds to a query q𝑡,𝑖 . Hyperedges model spatial depen-
dencies, connecting groups of nodes to capture complex spatial
relationships beyond simple pairwise connections.

We construct hyperedges by computing pairwise distances be-
tween queries q𝑡,𝑖 and q𝑡, 𝑗 for each pair of instances 𝑖 and 𝑗 (𝑖 ≠ 𝑗 ).
Specifically, the distance 𝑑𝑖 𝑗 between nodes 𝑣𝑡,𝑖 and 𝑣𝑡, 𝑗 , which are
associated with feature vectors q𝑡,𝑖 and q𝑡, 𝑗 , is computed as:

𝑑𝑖 𝑗 = ∥q𝑡,𝑖 − q𝑡, 𝑗 ∥2, (6)

where ∥·∥2 denotes the Euclidean norm. For each node 𝑣𝑡,𝑖 , we
identify its 𝑘-nearest neighbors based on the smallest distances in
feature space, forming a neighborhood set N𝑡,𝑖 that captures the
local spatial context. A hyperedge 𝑒𝑡,𝑖 is then defined to include 𝑣𝑡,𝑖
and its neighbors N𝑡,𝑖 , forming:

𝑒𝑡,𝑖 = 𝑣𝑡,𝑖 ∪ N𝑡,𝑖 . (7)

The strength of relationships within each hyperedge is repre-
sented by a weight𝑤𝑡,𝑖 ∈ W𝑡 , calculated as:

𝑤𝑡,𝑖 =
1

|N𝑡,𝑖 |
∑︁

𝑣𝑡,𝑗 ∈N𝑡,𝑖

1
𝑑𝑖 𝑗

, (8)

where |N𝑡,𝑖 | is the number of nodes in the neighborhood set. This
weighting effectively encodes spatial information, preserving key
characteristics of instance arrangements.
Weighted Sheaf Hypergraph Convolution. After constructing
the hypergraphH𝑡 for each frame, we use the sheaf Laplacian to
perform hypergraph feature propagation to augment the structural
feature representation. We fully consider the strength of the hyper-
edges on the node feature propagation, and when performing the
node feature update, in addition to considering the size of the hyper-
edges, we also weight the differences between the nodes through
the weights. Therefore, the formula is rewritten as:

LF
𝑣 =

∑︁
𝑒 ;𝑣∈𝑒

𝑤𝑒

𝛿𝑒
F𝑇
𝑣⊴𝑒

( ∑︁
𝑢∈𝑒,𝑢≠𝑣

(F𝑣⊴𝑒𝑥𝑣 − F𝑢⊴𝑒𝑥𝑢 )
)
. (9)

The Weighted Sheaf Hypergraph Convolution (WSHC) layer
operation is formulated as:

Q𝑙+1
𝑡 = 𝜎 ((I𝑛𝑑 − ΔF) (I𝑛 ⊗𝑊 𝑙

1 )Q
𝑙
𝑡𝑊

𝑙
2 ), (10)

ΔF = 𝐷−1/2LF𝐷
−1/2, (11)

where I𝑛𝑑 and I𝑛 are unit matrices of size 𝑛𝑑 × 𝑛𝑑 and 𝑛 × 𝑛 re-
spectively. 𝑛 is the number of nodes, and 𝑑 is the sheaf dimension.
𝐷 = 𝑑𝑖𝑎𝑔(𝐷1, 𝐷2, · · · , 𝐷𝑣) ∈ R𝑛𝑑×𝑛𝑑 is the corresponding block
diagonal matrix, where each block 𝐷𝑣 =

∑
𝑒 ;𝑣∈𝑒

F⊤
𝑣⊴𝑒F𝑣⊴𝑒 ∈ R𝑑×𝑑

represents the degree matrix for each node. 𝑙 denotes the current
layer index. The output of layer 𝑙 serves as the input for the next
layer. We constructed a structural feature Q𝐿

𝑡 of the 𝐿-layer WSHC
after it has been enhanced.

The WSHC layer propagates and refines these features by incor-
porating higher-order relationships captured by the hypergraph.
The sheaf Laplacian ΔF enforces local consistency among node
features based on the constraints defined by each hyperedge 𝑒𝑡, 𝑗 .
The term I𝑛𝑑 − ΔF incorporates the sheaf Laplacian for feature dif-
fusion while respecting the sheaf constraints. The learnable weight
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matrices𝑊1 ∈ R𝑑×𝑑 and𝑊2 ∈ R𝑑×𝑑 dynamically adjust feature
transformations and aggregations. I𝑛 ⊗𝑊1 uniformly scales feature
vectors, while the ReLU activation 𝜎 introduces non-linearity to
model complex patterns.

4.2 Establishing Temporal Consistency
Once the higher-order hypergraph-based relationships have been
refined, the correspondence between instances in successive frames
𝑡 and 𝑡 + 1 needs to be established. As objects undergo occlusion,
movement, and appearance changes, accurate instance tracking
over time is crucial. We use theWeighted SlicedWasserstein (WSW)
metric to establish instances correspondences between instances
in consecutive frames.

For each query 𝑖 in frame 𝑡 and instance 𝑗 in frame 𝑡 + 1, we
define the random path 𝑍𝑖, 𝑗 = q𝐿

𝑡,𝑖
−q𝐿

𝑡+1, 𝑗 , capturing the directional
difference between the two enhanced query. q𝐿

𝑡,𝑖
∈ Q𝐿

𝑡 and q𝐿
𝑡+1,𝑖 ∈

Q𝐿
𝑡+1 are the output of the WSHC. This path is then normalized to

obtain the unit direction 𝜃𝑖, 𝑗 =
𝑍𝑖,𝑗

∥𝑍𝑖,𝑗 ∥2 , which serves as the random-
path projecting direction. In cases of near-zero 𝑍𝑖, 𝑗 (i.e., nearly
identical features), a predefined small constant is added to ensure
stability. The set of such directions, enriched by a small random
perturbation if needed, forms a distribution of projection directions
that highlights spatial and appearance differences.

For each projecting direction 𝜃𝑖, 𝑗 , we project Q𝐿
𝑡 and Q𝐿

𝑡+1 along
𝜃𝑖, 𝑗 to obtain one-dimensional representations, and calculate the
Wasserstein distance𝑊𝑝 (𝜃𝑖, 𝑗 ♯Q𝐿

𝑡 , 𝜃𝑖, 𝑗 ♯Q𝐿
𝑡+1) between the projected

distributions. This distance measures how well the instances align
along that particular direction. Larger Wasserstein distances in-
dicate greater dissimilarity between instances in the direction of
𝜃𝑖, 𝑗 , thus capturing more distinctive variations. To emphasize in-
formative directions, we weight these distances that applies higher
weights to projections with larger differences, enhancing the dis-
criminative capability of the WSW measure. The final WSW dis-
tance between Q𝐿

𝑡 and Q𝐿
𝑡+1 (see Eq.5) is an aggregate of these

weighted distances:

WSW𝑝
𝑝 (Q𝐿

𝑡 ,Q𝐿
𝑡+1) =

∑︁
𝑖, 𝑗

𝑤𝑖, 𝑗𝑊𝑝 (𝜃𝑖, 𝑗 ♯Q𝐿
𝑡 , 𝜃𝑖, 𝑗 ♯Q𝐿

𝑡+1), (12)

where 𝑤𝑖, 𝑗 represents the importance weight for each projected
distance between instances in consecutive frames. The weight𝑤𝑖, 𝑗

determines the contribution of each projecting direction to the
overall WSW distance.

The weight 𝑤𝑖, 𝑗 is typically calculated based on the projected
Wasserstein distance 𝑊𝑝 (𝜃𝑖, 𝑗 ♯Q𝐿

𝑡 , 𝜃𝑖, 𝑗 ♯Q𝐿
𝑡+1) between the query

in frames 𝑡 and 𝑡 + 1. This distance indicates how dissimilar the
projected distributions are along the direction 𝜃𝑖, 𝑗 , which is based
on the difference between query q(𝐿)

𝑡,𝑖
and q(𝐿)

𝑡+1, 𝑗 . The weight𝑤𝑖, 𝑗

for a direction 𝜃𝑖, 𝑗 is:

𝑤𝑖, 𝑗 =
𝑓 (𝑊𝑝 (𝜃𝑖, 𝑗 ♯Q𝐿

𝑡 , 𝜃𝑖, 𝑗 ♯Q𝐿
𝑡+1))∑

𝑘,𝑙 𝑓 (𝑊𝑝 (𝜃𝑘,𝑙 ♯Q𝐿
𝑡 , 𝜃𝑘,𝑙 ♯Q𝐿

𝑡+1))
, (13)

where 𝑓 (𝑥) = 𝑒𝑥 is typically a monotonic function, places higher
importance on larger differences, which may highlight instances
with more substantial temporal changes. This normalization en-
sures that the weights sum up to 1 across all pairs, providing a

proportionate contribution of each pair to the final WSW distance.
This normalization ensures that all projection pairs contribute pro-
portionately, preventing any single pair from disproportionately
affecting the WSW.

To establish instance correspondences, we compute the WSW
values between all pairs of instances across consecutive frames 𝑡
and 𝑡 + 1, denoted as WSW𝑝

𝑝 (Q𝐿
𝑡 ,Q𝐿

𝑡+1). These values quantify the
difference between instances along the direction of projection, with
smaller WSW values indicating stronger spatio-temporal consis-
tency. By selecting the instance pairs with the smallestWSW values,
we identify those with the highest temporal alignment, ensuring
robust and meaningful associations for instance tracking.

Formally, the instance matching objective is defined as:

L𝑀𝑎𝑡𝑐ℎ = argmin
𝑖, 𝑗

WSW𝑝
𝑝 (Q𝐿

𝑡 ,Q𝐿
𝑡+1), (14)

where the selected pairs correspond to instances with the strongest
spatio-temporal consistency, facilitating accurate tracking and cor-
relation across frames.

In this way, our method emphasizes directions and features that
capture significant inter-frame changes, effectively prioritizing in-
stances that reflect spatial and appearance consistency. The adaptive
weighting in WSW further enhances tracking accuracy by high-
lighting subtle variations, ensuring robust temporal consistency.
Computational Complexity: In Eq. 12, when Q𝐿

𝑡 and Q𝐿
𝑡+1 are

discrete measures with at most 𝑛 supports, sampling their random-
path projections incurs the following complexities: Random Path
Sampling: The cost for 𝐿 projections is O(𝐿𝑑𝑛) in both time and
memory. Projection Sampling: Sampling from von Mises-Fisher
(vMF) and Power Spherical (PS) distributions costs O(𝐿𝑑). One-
Dimensional Wasserstein Distance: Computing𝑊 𝑝

𝑝 for all pro-
jections adds O(𝐿𝑛 log𝑛). The overall time complexity is therefore
O(𝐿𝑛 log𝑛 + 𝐿𝑑𝑛), and the space complexity is O(𝐿𝑑 + 𝐿𝑛). These
complexities are manageable, ensuring the method is scalable for
large datasets.

4.3 Objective Function.
Finally, the enhanced instance query, denoted as Q𝐿

𝑡 , is used as
input for both the class head and the mask head, which generate
the category and mask coefficient outputs, 𝑦𝑡 .

The total loss function for our WSInfer is defined as:

L𝑇𝑜𝑡𝑎𝑙 = L𝑀𝑎𝑠𝑘 (𝑦,𝑦) + L𝑀𝑎𝑡𝑐ℎ, (15)

where 𝑦 is label, L𝑀𝑎𝑠𝑘 [8] refers to the mask loss related to both
class and mask predictions.

5 Experiments
5.1 Implementation Details
For the Restriction Maps F𝑣⊴𝑒 = MLP(𝑣, 𝑒) ∈ R𝑑×𝑑 , the inputs to
the MLP are the node feature 𝑣 and the hyperedge feature 𝑒 . The
MLP architecture consists of two fully - connected layers with ReLU
activation in between. The first layer has an input dimension of the
sum of the dimensions of 𝑣 and 𝑒 , and an output dimension of 𝑑 .
The second layer outputs 𝑑 elements. The final restriction block is
obtained by creating a diagonal matrix with these𝑑 elements. In our
setup, 𝑑 = 8. We conducted a hyperparameter search for 𝐾 in the
k-nearest neighbors strategy, testing values from 3 to 10. Given that
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Table 1: Results on the validation sets of YouTube-VIS 2019 & 2021 and OVIS. † denotes offline methods.

Method Backbone Youtube-VIS 2019 Youtube-VIS 2021 OVIS
AP AP75 AR10 AP AP75 AR10 AP AP75 AR10

MaskTrack R-CNN [43] ResNet-50 30.3 32.6 35.5 28.6 29.6 33.8 10.8 8.5 14.9
SipMask [5] ResNet-50 33.7 35.8 40.1 31.7 34.0 37.8 - - -
CrossVIS [44] ResNet-50 36.3 38.9 40.7 34.2 37.9 38.2 14.9 12.1 19.8
EfficientVIS [41]† ResNet-50 37.9 43.0 46.6 34.0 37.3 42.5 - - -
IFC [19]† ResNet-50 41.2 44.6 49.6 35.2 37.7 42.9 13.1 11.6 23.9
Mask2Former-VIS [8]† ResNet-50 46.4 50.0 - 40.6 41.8 - 17.3 15.1 23.5
SeqFormer [39]† ResNet-50 47.4 51.8 54.8 40.5 43.7 48.1 15.1 13.8 27.1
VISOLO [13] ResNet-50 38.6 43.7 42.5 36.9 40.2 40.9 15.3 13.8 20.0
MinVIS [18] ResNet-50 47.4 52.1 55.7 44.2 48.1 51.7 25.0 24.0 29.7
IDOL [40] ResNet-50 49.5 52.9 58.7 43.9 49.6 50.9 28.2 28.0 38.6
VITA [17]† ResNet-50 49.8 54.5 61.0 45.7 49.5 53.6 19.6 17.4 26.0
GenVIS[16] ResNet-50 50.0 54.6 59.7 47.1 51.5 54.7 35.8 36.2 39.6
DVIS[48] ResNet-50 51.2 57.1 59.3 46.4 49.6 53.5 31.0 31.9 37.6
TCOVIS [24] ResNet-50 52.3 57.6 60.2 49.5 53.8 55.9 35.3 36.6 39.5
CTVIS [45] ResNet-50 55.1 59.1 63.2 50.1 54.7 59.5 35.5 34.9 41.9
VISAGE [23] ResNet-50 55.1 60.6 62.3 51.6 56.1 59.3 36.2 35.3 40.3
Our ResNet-50 55.3 61.2 62.8 51.7 56.3 59.1 36.8 36.9 41.7
SeqFormer [39]† Swin-L 59.3 66.4 64.4 51.8 58.2 58.1 - - -
Mask2Former-VIS [8]† Swin-L 60.4 67.0 - 52.6 57.2 - 25.8 24.4 32.2
MinVIS [18] Swin-L 61.6 68.6 66.6 55.3 62.0 60.8 39.4 41.3 43.3
VITA [17]† Swin-L 63.0 67.9 68.1 57.5 61.0 62.6 27.7 24.9 33.0
GenVIS[16] Swin-L 64.0 68.3 69.4 59.6 65.8 65.0 45.2 48.4 48.6
IDOL [40] Swin-L 64.3 71.0 69.1 56.1 63.5 60.1 40.0 40.5 46.4
DVIS[48] Swin-L 63.9 70.4 69.0 58.7 66.6 64.6 45.9 48.3 51.5
TCOVIS [24] Swin-L 64.1 69.5 69.0 61.3 68.0 65.1 35.3 36.6 39.5
CTVIS [45] Swin-L 65.6 72.2 70.4 61.2 68.8 65.8 46.9 47.5 52.1
Our Swin-L 66.2 72.5 70.3 61.6 69.5 65.8 46.9 49.0 52.4

nodes are constructed using 100 queries from Mask2Former, exces-
sively large 𝐾 values risk over-smoothing. Results show the model
is insensitive to 𝐾 , leading us to select 𝐾 = 5 for its balance be-
tween local and global context modeling. To ensure the robustness
of our framework, we carefully fine-tuned several hyperparame-
ters through validation experiments. The learning rate was set to
1 × 10−4, providing a stable optimization process while avoiding
overfitting. We used three layers of Weighted Sheaf Hypergraph
Convolution (WSHC), striking a balance between computational
efficiency and the depth of structural feature learning. For hyper-
graph construction, we employed a 𝑘-nearest neighbor strategy
with 𝑘 = 5, which effectively captured local spatial relationships
while avoiding over-clustering.

In addition, we chose 100 random-path projections (𝐿 = 100)
for the Weighted Sliced Wasserstein (WSW) computation, ensur-
ing sufficient diversity in the projection directions for temporal
consistency. A regularization weight of 𝛼 = 0.1 was applied to the
sheaf Laplacian to ensure smooth feature propagation while main-
taining local structural consistency. For training, we set the batch
size to 8 and trained the model over 50 epochs, which provided

sufficient iterations to capture both spatial and temporal relation-
ships within the datasets. All experiments were conducted on a
high-performance machine equipped with 8 NVIDIA A800 GPUs.

5.2 Datasets and Evaluation Metrics
We evaluate the performance of WSInfer for VIS on the YouTube
VIS 2019, 2021, and 2022 [43] datasets, OVIS [31], and for VPS on
the VIPSeg [27] dataset.
YouTube-VIS datasets from 2019, 2021, and 2022 are established
as standard benchmarks for Video Instance Segmentation (VIS).
These datasets encompass a diverse collection of video sequences,
featuring multiple interacting object instances with substantial
category variation and complex spatiotemporal dynamics.
OVIS dataset is specifically curated for Occluded Video Instance
Segmentation, containing highly occluded and intricate scenes that
present significant challenges for model evaluation under adverse
visual conditions. It serves as a rigorous benchmark for assessing
the robustness of models in handling severe occlusions.
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Table 2: Results on the YouTube-VIS 2022 dataset with Swin-L
backbone. The best metrics in each group are bolded.

Method YouTube-VIS 2022
AP AP50 AP75 AR1 AR10

MinVIS [18] 33.1 54.8 33.7 29.5 36.6
VITA [17] 41.1 63.0 44.0 39.3 44.3
GenVIS [15] 44.3 69.9 44.9 39.9 48.4
DVIS[48] 45.9 69.0 48.8 37.2 51.8
Our 48.6 72.5 51.2 40.8 55.1

Table 3: Results on the VIPSeg dataset. R and S indicate
ResNet50 and Swin-L backbone networks, respectively.

Method VIPSeg
VPQ VPQTh VPQSt STQ

R

VPSNet [22] 14.0 14.0 14.2 20.8
VPSNet-SiamTrack [38] 17.2 17.3 17.3 21.1
VIP-Deeplab [32] 16.0 12.3 18.2 22.0
Clip-PanoFCN [27] 22.9 25.0 20.8 31.5
Video K-Net [26] 26.1 - - 31.5
TarVIS [3] 33.5 39.2 28.5 43.1
Tube-Link [25] 39.2 - - 39.5
Video-kMax [36] 38.2 - - 39.9
DVIS[48] 43.2 43.6 42.8 42.8
Our 44.1 44.3 43.2 42.9

S
TarVIS [3] 48.0 58.2 39.0 52.9
DVIS[48] 57.6 59.9 55.5 55.3
Our 58.1 60.5 56.8 56.0

VIPSeg dataset addresses the broader task of Video Panoptic Seg-
mentation (VPS) by providing comprehensive pixel-level annota-
tions that include both instance-level objects ("things") and seman-
tic background regions ("stuff"). This richer annotation scheme al-
lows for the simultaneous assessment of models’ abilities to handle
instance-level segmentation and semantic understanding, thereby
requiring a more holistic interpretation of the video, including the
interaction between instances and the environment.

We employ Average Precision (AP) and Average Recall (AR) as
evaluation metrics for the VIS datasets, following the methodology
in [43]. For the VPS datasets, we utilize Video Panoptic Quality
(VPQ) and Segmentation and Tracking Quality (STQ) as evaluation
metrics [22]. Supplemental Materials reports more results.

5.3 Results of Video Segmentation
Performance on Youtube-VIS 2019&2021 datasets. The exper-
imental results in Table. 1 demonstrate the effectiveness of our
proposed methodology in comparison to state-of-the-art models
for Video Instance Segmentation (VIS) on the YouTube-VIS 2019
and 2021 datasets. By leveraging the Weighted Structure Modeling
framework, our method consistently outperforms existing models
across key metrics. Specifically, our model shows significant im-
provements in capturing higher-order interactions and maintaining
robust tracking, particularly in complex and occlusion-heavy scenes.

Table 4: Ablation study results on core components.

Modules AP AP50 AP75 AR1 AR10
WSInfer 55.3 78.5 61.2 50.9 62.8
w/o HGC 48.6 72.7 53.5 45.0 57.8
w/o WSHC 50.1 74.2 55.0 46.6 59.9
w/o WSW 51.3 75.3 57.2 48.3 61.1

The use of hypergraph-based representations allows for more nu-
anced modeling of intricate relationships, surpassing traditional
graph neural network approaches and outperforming advanced
decoupling strategies. These results highlight the strength of hy-
pergraph modeling in addressing progressive occlusion challenges,
leading to marked improvements in both segmentation accuracy
and temporal continuity across dynamic video environments.
Performance onOVIS dataset. The results in Table. 1 on the OVIS
dataset further emphasize the strengths of our proposed method,
especially in tackling the highly challenging occlusion scenarios
prevalent in this dataset. By incorporating a weighted strategy for
high-order relationship modeling, our method achieves leading
performance in key metrics, demonstrating its ability to capture
the complex dependencies between instances. This is crucial for
managing progressive and overlapping occlusions, underscoring
the robustness of our approach in difficult visual conditions.
Performance on Youtube-VIS 2022 dataset. On the YouTube-
VIS 2022 dataset, our method excels in handling long and complex
video sequences characterized by intricate object interactions and
frequent occlusions. As shown in Table. 2, our model achieves the
highest Average Precision (AP) of 48.6, AP75 of 51.2, and Average
Recall (AR10) of 55.1, showcasing superior precision and robustness
in tracking and segmenting objects over extended frames.
Performance on VIPseg dataset. The VIPSeg dataset presents a
unique challenge due to its requirement for robust temporal and
spatial understanding, given the dynamic object movements and
scene transitions. In Table. 3, our model achieves the highest scores
in Video Panoptic Quality (VPQ), VPQTh, VPQSt, and Segmentation
and Tracking Quality (STQ), demonstrating its superior ability to
maintain temporal consistency while ensuring high segmentation
quality for both moving objects and background elements. These
results validate the effectiveness of hypergraph-based modeling
in integrating both semantic and instance-level cues, which are
crucial for excelling in complex video segmentation tasks such as
those presented by VIPSeg.

5.4 Ablation Experiments
Ablation experiments were conducted on the Youtube-VIS 2019
dataset, with WSInfer evaluated using ResNet50 and input resized
to 360p unless otherwise specified.
Core Component. The ablation study in Table. 4 highlights the
importance of each core component in the WSInfer framework.
Removing hypergraph construction (HGC) caused the largest drop
in AP (from 55.3 to 48.6), underscoring its critical role in mod-
eling high-order relationships among instances. The absence of
Weighted Sheaf Hypergraph Convolution (WSHC) reduced AP to
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Table 5: Ablation study results comparing different hyper-
graph construction modules for the WSInfer framework.

Modules AP AP50 AP75 AR1 AR10
K-Nearest Neighbors 55.3 78.5 61.2 50.9 62.8
Spectral Clustering 52.1 75.3 57.4 48.2 60.2
K-Means Clustering 51.6 74.6 56.7 47.5 59.5
Fuzzy C-Means 52.9 76.4 58.3 49.1 61.1

Table 6: Ablation study results comparing different hyper-
graph convolution modules for the WSInfer framework.

Modules AP AP50 AP75 AR1 AR10
WSHC (Eq.10) 55.3 78.5 61.2 50.9 62.8
Standard 50.3 73.1 55.0 47.0 59.2
Attention-based 52.4 75.0 57.7 48.6 60.8
Spectral 51.7 74.4 56.3 48.1 60.0

50.1, demonstrating its contribution to enriching feature represen-
tation. Similarly, removing Weighted Sliced Wasserstein (WSW) led
to a decrease in AP to 51.3, indicating its importance in maintaining
temporal coherence across frames.
Hypergraph Construction. The results in Table. 5 demonstrate
the influence of different hypergraph construction modules on
the WSInfer framework’s performance. The k-Nearest Neighbors
(k-NN) module achieves the highest AP (55.3) and overall best per-
formance across all metrics, indicating that connecting nodes based
on feature space proximity effectively captures local interactions
critical for video instance segmentation. Spectral Clustering per-
forms slightly worse, with an AP of 52.1, suggesting that while
spectral properties capture broader community structures, they
may not effectively represent fine-grained local relationships. K-
Means Clustering shows a further drop in performance (AP of 51.6),
implying that hard clustering may oversimplify the underlying rela-
tionships between nodes, leading to less effective hyperedges. Fuzzy
C-Means (FCM) provides a balance, with an AP of 52.9, benefiting
from overlapping clusters that capture more nuanced relationships,
though still not outperforming k-NN.
Hypergraph Convolution. The results in Table. 6 of the ablation
study underscore the superior performance of the Weighted Sheaf
Hypergraph Convolution (WSHC) module, which leads with the
highest AP score of 55.3. This can be attributed to WSHC’s ability
to enforce strong local consistency while simultaneously enriching
feature representations, making it particularly well-suited to the
demands of video instance segmentation. In comparison, the Stan-
dard Hypergraph Convolution [42] module lags behind, achieving
a lower AP of 50.3. Its basic aggregation strategy is insufficient
for capturing the complex relationships among nodes, leading to
suboptimal performance. The Attention-based Hypergraph Convo-
lution [52] module shows some improvement with an AP of 52.4, as
it adaptively weights the contributions of individual nodes. How-
ever, it still fails to surpassWSHC, particularly in its ability to model
intricate local interactions. Spectral Hypergraph Convolution is
effective in capturing broad global structures but struggles with the
local relationships necessary for more accurate segmentation.

Table 7: Ablation study results comparing different temporal
consistency modules for the WSInfer framework.

Modules AP AP50 AP75 AR1 AR10
WSW (Eq.12) 55.3 78.5 61.2 50.9 62.8
Refiner 51.5 74.0 56.1 48.0 60.0
1D-W 50.7 73.5 55.5 47.0 59.5
RNNC 52.1 75.5 57.0 48.7 61.0

Temporal Consistency. The results in Table. 7 of the ablation
study highlight the superior performance of the Weighted Sliced
Wasserstein (WSW)module in ensuring temporal consistency, where
it achieves the highest AP score of 55.3. This success can be attrib-
uted to WSW’s ability to capture complex high-order relationships
and effectively model significant temporal changes across frames.
In contrast, other modules, such as the Temporal Refiner [48], One-
dimensional Wasserstein (1D-W) and Recurrent Neural Network-
based Consistency (RNNC), fall short inmodeling intricate temporal
dependencies, which limits their ability to account in the video.

6 Conclusion
This paper introduces the Weighted Structure Modeling Hyper-
graph (WSInfer) framework to address the challenge of progressive
occlusion in video instance segmentation. By leveraging weighted
sheaf hypergraph convolution, WSInfer effectively captures higher-
order relationships, overcoming the limitations of traditional graph
neural networks (GNNs). Key contributions of this work include
the enhancement of higher-order correspondences between local
and global features across frames, facilitated by a weighted ap-
proach. Additionally, we introduce the weighted sheaf hypergraph
convolution and weighted slice distance (WSD) measures, which
further improve the model’s performance. Experimental results
demonstrate that WSInfer outperforms existing methods, leading
to significant improvements in segmentation accuracy and conti-
nuity in complex scenes. For future work, we propose optimizing
the WSD of all matched instances globally across multiple frames,
which will enable offline handling of long-term progressive occlu-
sions and further enhance spatio-temporal consistency. In addition,
we will explore extending the WSInfer framework to the field of
neuroscience [1, 21, 28] to handle high-order relationship modeling
tasks such as neuron tracing and brain region functional connec-
tivity analysis.
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